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Abstract—In this paper, we propose a two-stream transformer networks (TSTN) approach for video-based face alignment. Unlike

conventional image-based face alignment approaches which cannot explicitly model the temporal dependency in videos and motivated

by the fact that consistent movements of facial landmarks usually occur across consecutive frames, our TSTN aims to capture the

complementary information of both the spatial appearance on still frames and the temporal consistency information across frames. To

achieve this, we develop a two-stream architecture, which decomposes the video-based face alignment into spatial and temporal

streams accordingly. Specifically, the spatial stream aims to transform the facial image to the landmark positions by preserving the

holistic facial shape structure. Accordingly, the temporal stream encodes the video input as active appearance codes, where the

temporal consistency information across frames is captured to help shape refinements. Experimental results on the benchmarking

video-based face alignment datasets show very competitive performance of our method in comparisons to the state-of-the-arts.

Index Terms—Face alignment, convolutional neural networks, recurrent neural networks, face tracking, biometrics
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1 INTRODUCTION

FACE alignment (a.k.a. facial landmark detection) attempts
to localize facial landmarks for a given face image, which

plays an important role in many facial analysis tasks, such as
face verification [15], [38], face recognition [16] and facial
attribute analysis [19]. Conventional methods [27], [46], [47],
[48], [50] address the face alignment as a cascaded regression
problem,which seeks a series of linear feature-to-shapemap-
pings to refine the initial shape to the final shape in a coarse-
to-fine manner. However, features employed in these meth-
ods are hand-crafted, which requires strong prior knowledge
by hand. To address this issue, deep learning [40], [43], [45],
[48] has been applied to learn discriminative features directly
from image pixels to exploit the complex and nonlinear rela-
tionship between face data and facial shapes, which achieves
significant improvements for the face alignment perfor-
mance based on the image-based benchmarking datasets.

Recently, efforts have been devoted to address the prob-
lem of video-based face alignment, which aims to localize
facial landmarks in unconstrained videos. In contrast to
image-based face alignment methods, tracking-by-detection
methods [5], [10], [42] have been proposed in video-base
face alignment, which employ an incremental learning

technique to detect facial landmarks on still frames. How-
ever, these methods cannot explicitly capture the temporal
dependency relationship on adjacent frames, which is use-
ful for video-based face alignment. To address this chal-
lenge, Peng et al. [25], [26] proposed two video-based face
alignment methods, which utilize temporal information to
flow across frames in a sequential manner. While encourag-
ing performance has been obtained, these methods cannot
explicitly exploit the complementary information of the
appearance features in the spatial dimension and the consis-
tency information in the temporal dimension accordingly.

In this paper, we propose a two-stream deep learning
method for video-based face alignment. Motivated by the
fact that the temporal consistency related to facial landmarks
in videos is helpful to regarding with the variations of large
poses, expressions and occlusions over time, our model aims
to exploit the complementary information of the appearance
information on still frames and the temporal consistency
information across consecutive frames accordingly. To
achieve this, we carefully design two-stream transformer
networks (TSTN) which specifically consist of the spatial
and temporal streams. The spatial stream network learns to
transform the facial appearance features to landmark posi-
tions by preserving the holistic facial shape structure.
Accordingly, the temporal stream network learns to embed
the face sequence as the active appearance codes where the
consistency information is integrated to refine the landmarks
in the temporal dimension. The network parameters of the
designed two-stream architecture are optimized by back-
propagation in an end-to-endmanner. Fig. 1 shows the pipe-
line of our proposed TSTN. Experimental results show that
our method achieves very competitive performance com-
pared with the state-of-the-arts on both controlled and
uncontrolled video-based face alignment datasets.
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2 RELATED WORK

Conventional Face Alignment. Conventional image-based face
alignment methods [7], [9], [17], [46], [47], [48], [49], [50] aim
to learn a series of feature-to-shape regression functions to
refine the facial shape progressively, which significantly
improve the alignment accuracy. For example, Xiong
et al. [46] proposed a supervised decent method (SDM) to
learn a sequence of feature-to-shape mapping functions to
refine the facial shapes. Zhu et al. [50] developed a coarse-
to-fine shape searching (CFSS) approach to gradually shrink
the possible facial shape space, which exhibits significant
performance for the image-based face alignment. Recently,
stereo-based models [6], [13], [14], [33] have also been pro-
posed to explore 3D face alignment on a large, diverse
corpora of multi-view face images annotated with 3D spa-
tial information. However, these methods cannot directly
model the temporal information on the consecutive frames,
which is useful for video-based face alignment. In contrast
to these methods, our model learns to exploit the temporal
consistency information of landmarks of multiple frames.

Video-based face alignment [32], [34] focuses on detecting
facial landmarks in a sequence of face images. Unlike exist-
ing image-based face alignment methods, efforts have been
devoted to this problem recently [5], [8], [10], [34], [41], [42],
which perform the incremental learning method to predict
facial landmarks on still frames in a tracking-by-detection
manner. However, these methods cannot explicitly model
the temporal dependency relationship of landmarks across
frames. To exploit this dependency relationship on frames,
Peng et al. [25] proposed a sequential face alignment method
in videos, which consists of a sequence of spatial and tempo-
ral recurrences. While their model has obtained promising
performance on the video-based benchmark datasets, their
sequential model cannot exploit the complementary infor-
mation from the spatial and temporal dimensions accord-
ingly. To address this, we propose a two-stream framework
in this paper, which learns to capture the complementary
information of the appearance information on still images in
the spatial stream and the continuous consistency across
multiple frames in the temporal stream. The final prediction

of facial landmarks is determined by a weighted fusion of
both spatial and temporal streams.

Face Alignment by Deep Learning. In recent years, deep
learning has been adopted to face alignment [20], [36], [40],
[44], [45], [48], which learns discriminative and robust fea-
tures directly from pixels tomodel the nonlinear relationship
between the face images and facial shapes. For example,
Zhang et al. [48] presented a coarse-to-fine auto-encoder
networks (CFAN) method to refine the landmark locations
iteratively. Zhang et al. [49] developed a multi-task deep
learning method dubbed TCDCN to learn feature represen-
tation for face alignmentwith additional expression and gen-
der attributes. However, these methods have been designed
to explore spatial and appearance features, which cannot
explicitlymodel the temporal consistency information across
frames. In order to include temporal information into the
deep neural network, several attempts have been made in
video-based visual analysis recently such as the two-stream
convolutional networks [11], [21], [35] and the sequential
pooling networks [22], [28]. Our motivation of this work is to
propose a two-stream video-based face alignment frame-
work by leveraging both the feed-forward and feed-back net-
works, which specifically refines the positions of facial
landmarks by exploiting complementary information of the
appearance information in static images and the temporal
consistency information across frames accordingly.

3 TWO-STREAM TRANSFORMER NETWORKS

Unlike the static image-based face alignment methods [7],
[29], [41], [46], [50] cannot directly model the temporal con-
sistency for facial landmarks across frames, in this work, we
propose a two-stream transformer networks approach
which decomposes the video input to the spatial and tem-
poral streams. To achieve this, our model learns to trans-
form image sequences to a series of facial shapes via the
designed two streams, where the shape-sensitive appear-
ance information in the spatial stream and the consistency
information in the temporal stream are exploited simulta-
neously. Specifically, the spatial stream learns to transform
image pixels to the landmark positions by preserving the

Fig. 1. The pipeline of the proposed two-stream transformer networks (TSTN). The input to our TSTN consists of both color (RGB) channels of still
images and a video clip that contains a sequence of face images. The main objectives of our TSTN are two-fold: 1) the RGB channels are exploited
as the appearance information in the spatial stream, and 2) the multiple frames (a video clip) are directly encoded as active appearance codes by
exploiting the consistency information in the temporal stream. The final positions of facial landmarks are determined by a weighted fusion of both the
spatial and temporal streams. The parameters of the designed networks are jointly optimized by back-propagation. During the testing phase, we
feed a face sequence as the input to the learned two-stream networks and then predict a series of landmark positions for the face video clip.
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global shape constraints on still frames. Accordingly, the
temporal stream encodes the video input as active appear-
ance codes across frames, where the temporal consistency
information for each landmark is exploited to improve the
face alignment accuracy in videos.

3.1 Problem Formulation

Suppose we have a training set fyigi¼1:N , where N repre-
sents the number of training samples and yi denotes the ith
sample for the specific video clip. Let y1:Ti ¼ fy1i ; y2i ;
. . . ; yti; . . . ; y

T
i g denote a face sequence consisting of T

frames, where yti ¼ ðxti;pt
i
�Þ denotes the frame at time t and

pt
i
�
is the corresponding ground-truth of the facial landmark

positions (T may be different for different person identities).
Let pt

i ¼ ½p1; p2; . . . ; pl; . . . ; pL�ti
0 2 R2L�1 denote the coordi-

nates of the global facial shape, the goal of face alignment is
to transform face image xt (a set of local patches) to facial
shape residual Dpt ¼ pt� � pt�1 at time t. Hence, the facial
shape for the current tth frame is refined based on the shape
of previous frame incrementally by ignoring index i for sim-
plicity

pt ¼ pt�1 þ Dpt: (1)

Our basic idea in this work is to transform the face
sequence fxtgt¼1:T to a set of facial landmark locations
fptgt¼1:T by exploiting the complementary information of
the spatial appearance features in still frames in the spatial
dimension and the consistency information of the adjacent
frames in the temporal dimension. Moreover, we employ a
pair of fusion weights b1 and b2 for the spatial stream and
temporal stream, respectively. To achieve this, we formulate
the following optimization objective function

min
f

J ¼
XN

i

XT

t

1

2
Dpt

i � b1fspat xti
� �� b2ftemp xti

� ��� ��2
2
;

subject to b1 þ b2 ¼ 1;

(2)

where fspatð�Þ and ftempð�Þ denote the image-to-shape trans-
former functions of the spatial and temporal streams,
respectively (typically, f denotes the network parameters),
b1 and b2 are fusion weights to balance the importance
between the predicted residuals of the spatial and temporal
streams. xti denotes the ith face sample for the time step t in
the training set.

Our model is trained with the mixed coefficients b1 and
b2, which performs the weighted fusion of the residuals
fspatð�Þ and ftempð�Þ estimated by both streams. How to learn
the spatial and temporal transformers fspatð�Þ and ftempð�Þ in
(2) is the crucial part of our model. In this work, we develop
a two-stream transformer networks architecture which
incorporates the spatial stream transformer fspatð�Þ to trans-
form face image to landmark locations and the temporal
stream transformer ftempð�Þ to exploit temporal consistency
information over time under the unified deep learning
architecture. Next, we detail the two-stream architecture of
the spatial and temporal networks, respectively.

3.2 Spatial Stream Network

In the spatial stream network, the motivation of this part is
to localize facial landmarks directly from still face images.
Hence, the spatial network learns to transform face image

or local raw patches to facial shape residuals and then to
refine the current facial shape based on the previous shape.
To achieve this, we design a sampling transformer, dubbed
sampler in this paper, which aims to extract the shape-index
raw patches [46] directly from face images based on the ini-
tial shape and is plugged to the designed spatial stream.
Moreover, we develop a convolutional regression network
to predict facial shape residuals by utilizing these sampled
shape-index features under the deep convolutional architec-
ture. Fig. 1 demonstrates the network design of the spatial
stream that consists of the sampler and convolutional
regression net modules.

Sampler. The goal of the sampler layer is to sample local
patches surrounding with the initial shape p as the input of
the regression network. The main advantage of the pro-
posed sampler module lies on that the shape-index patches
succeed in preserving the holistic facial shape constraints
during shape updating iterations [7], [46], [48]. Suppose we
have these cropped patches denoted by xt pþ dð Þ, where d is
the patch size that was specified to 26 in our experiments.
To perform an end-to-end optimization procedure, we also
provide the derivatives of the shape with respect to the loss,
which is computed for each landmark p (certain point from
the shape p) as follows (ignoring the time step t)

@J

@p
¼ @x

@p

@J

@x
; (3)

@x

@p
¼ rðxðpþ dÞÞ; (4)

where d is the size of sampled shape-index patches, xðpÞ
denotes the pixel value located at the landmark p and r
denotes the gradient-image w.r.t the cropped image patch,
respectively. Since the derivatives of the shape-image are
not strictly differentiable for 2D images, the value is app-
roximated by the gradient of the image. Specifically,
rðxðpþ dÞÞ is calculated by the Sobel operator [12] in size of
d� d which is convolved on the image patches. The final
result is summed up by performing gradients of total
landmarks.

Convolutional Regression Net. The convolutional regres-
sion network consists of a sequence of convolutional layer,
pooling layer, nonlinear ReLU [18] layer and inner
product (fully connected) layer, which learns to predict the
facial shape residual based on the extracted shape-index
patches from pixels. Given a facial image xt at the tth time
step, we feed shape-index patches to the network and com-
pute the feature representation a as follows:

at ¼ Pool ReLUðWS � xt pþ dð Þ þ bSÞ� �
; (5)

whereWS and bS represent the filter weights and bias of the
spatial network, respectively, xt pþ dð Þ denotes cropped
local patches indexed by the initial shape, Poolð�Þ denotes
the max-pooling operation, ReLUð�Þ denotes the nonlinear
ReLU [18] function and � denotes the convolution operation
of the designed convolutional regression network. Having
obtained the immediate feature a, we append two layers of
fully connected neural networks to transform the feature at

to facial shape residual Dpt in the spatial stream. At the
top of the raw prediction layer, we employ a nonlinear
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hyperbolic-tangent (tanh) nonlinear function, which effi-
ciently constrains the predicted shape residual within the
range of ½�1; 1� [4], [37]. To further improve the alignment
accuracy, we extend our model as a cascaded framework by
sharing two cascaded executions, where the inputs of the
current stage is fed with the outcomes of the previous stage
and this enables a coarse-to-fine process for face alignment.

Overall, the positions of facial landmarks for still frames
are predicted based on the proposed spatial stream, which
contributes a reliable shape refinement in the spatial dimen-
sion. However, the spatial stream cannot explicitly model
the temporal consistency for a video clip, so that the depen-
dency relationship of frames cannot be utilized to disambig-
uate the challenging cases when the face data encounters
large variations of facial aspect ratios, expressions and par-
tial occlusions over time.

3.3 Temporal Stream Network

The basic idea of our temporal stream network is to discover
shape-sensitive and spatial-temporal features for facial
dynamics across the temporal dimension. To realize the tem-
poral refinement mechanism, we carefully design a temporal
stream network, which is equipped with an encoder-decoder

module to compress the face sequence as the active appearance
codes that encode the whole face changes in the temporal
dimension, and a two-layer recurrent neural networks (RNN)
module to memorize and flow the temporal information
across consecutive frames by capturing the consistency infor-
mation over time. Fig. 2 shows the network design of the pro-
posed temporal stream network.

Encoder-Decoder Module. The encoder-decoder module
plays an important role in the temporal stream network,
which attempts to encode the image pixels across the time-
stamps as active appearance codes. Generally, the encoder-
decoder module is equipped with an encoder network and
an decoder network. To be specific, the encoder network
aims to learn the spatial-temporal features, which embeds
the local context details to refine each landmark. The
decoder network remaps the learned codes to the same size
of the origin face input, which preserves the spatial struc-
tural information for robust shape estimation.

The input of the encoder requires a sequence of facial
images of xt 2 RW�H�C with widthW , heightH and channel
C (RGB). The encoder architecture consists of a series of con-
volution, pooling and inner product layers and the encoded
feature maps are computed as: Ut 2 RW 0�H0�C0

with new
width W 0, height H 0 and channel C0 by Ut ¼ EncoderðxtÞ,
where Encoderð�Þ denotes the parameters of the encoder net-
work. By the encoder network, face frames are encoded as a
set of active appearance codes, where the shape-informative
features are captured across time, which is useful for video-
based face alignment. Symmetrically, the decoder network
performs a sequence of inner product, uppooling and decon-
volution layers [23] to rescale the learned codes Ut from
the encoder net to a multi-channel response maps Vt 2
RW�H�C

00
, the size of which is equivalent dimensions to the

image input, where C
00
denotes the channel dimension of the

decoded feature maps. The decoded maps Vt are computed
as: Vt ¼ DecoderðUtÞ, where Decoderð�Þ denotes decoder
parameters.

Having obtained these learned feature maps Vt at time t,
we take these maps as the input to a tiny convolutional net-
work and obtain the final shape estimation by adding the
facial shape predicted by that of the previous time step t� 1.

Recurrent Module. As mentioned previously, the temporal
stream learns to exploit the dependency relationship across
frames by allowing the temporal information flow over
time. Conventional feed-forward deep architectures [18],
[24] cannot feasibly explore the temporal information from
the full video input space. To achieve the contextual depen-
dencies for facial landmark across frames, we develop a
stacked two-layer recurrent neural network architecture.
More intuitively, the first layer learns to capture the holistic
spatial-temporal appearance features to be decoded for
shape estimation, and the second layer memorizes the tem-
poral information across frames.

As described in Fig. 2, the input of the recurrent module
contains a set of feature maps Ut which are learned by the
encoder for the observation at time t. For the first RNN layer,
we formulate the hidden stateht

1 for the time step t as follows:

ht
1 ¼ sðWI

1 �Ut þ b1Þ; (6)

Fig. 2. The work flow of the temporal stream. The proposed temporal
stream network consists of an encoder-decoder module to encode the
spatial information as active appearance codes U, and a two-layer RNN
module to memorize the temporal information to flow across frames.
Having obtained the decoded feature maps V, we sample a set of
patches and transform these spatial-temporal patches to facial landmark
locations by a convolutional neural network.
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where WI
1 denotes the weights of the input-to-hidden fully

connected layers and b1 denotes the bias. The input of the
second RNN layer is the output of the first RNN layer, mak-
ing this module a stacked RNN network. For the second
RNN layer, the hidden stage ht

2 of the second RNN layer is
formulated as follows:

ht
2 ¼ sðWI

2 � ht
1 þWR

2 � ht�1
2 þ b2Þ; (7)

where WI
2 denotes the weights of the input-to-hidden fully

connected layers,WR
2 denotes the hidden-to-hidden connec-

tions across adjacent time steps and b1 denotes the bias.
Each output of the second RNN layer is also concatenated
with the encoded active appearance codes Ut as the spatial-
temporal features, where the complementary information of
the spatial and temporal streams is exploited accordingly
for landmark localization. The hidden connections of the
RNN layers share parameters across time steps, where the
information on the RNN module’s state at the previous
time step can be memorized to flow across frames.

The proposed temporal stream including the encoder-
decoder and recurrent modules incorporates the consis-
tency over time during the temporal refinement process.
Even regarding with the temporal occlusion, the shape-
informative details for non-occluded parts in previous
frames are memorized to flow across the succeeding frames
for occluded parts. Overall, by incorporating the spatial
stream, our model achieves the complementary information
of appearance features with global shape-preserving prior
in still frames and the temporal consistency across consecu-
tive frames simultaneously, which performs the robust face
alignment in videos.

Optimization. In order to train the proposed two-stream
network, we employ our objective loss function (2) at the
raw predictions of both the spatial and temporal streams.
Since each component in the TSTN is differentiable (or
approximated for sampler layer), errors can be back-
propagated to all network layers and parameters of TSTN,
making the parameters in fspatð�Þ and ftempð�Þ trainable with
the stochastic gradient descent method. In terms of the
RNN module in the temporal stream network, the parame-
ters WI

1, b1, W
I
2 , W

R
2 , b2 of the temporal stream ftempð�Þ are

obtained by RMSProp [39].

3.4 Discussions

Differences with TSCN [35]. The spatial stream in TSCN [35]
learns features directly from the whole frame without any
shape-sensitive priors, which ignores the shape-informative
details to completely depict facial shape structure. Differ-
ently, our spatial stream learns to crop shape-index local
patches based on the initial shape, and then leverages con-
volutional neural network to predict the facial shape by
global shape regression. As a result, both local and global
shape-sensitive information are preserved simultaneously
during the shape refining process. Moreover, the temporal
stream in TSCN [35] needs pre-processing optical flow
which is hand-crafted and may lead to local optima due to
the two-stage manner. In contrast to TSCN [35], the
employed RNN architecture automatically exploits the
shape-sensitive features directly from the image pixels of
previous frames, and then making inference for the suc-
ceeding frames.

Differences with REDN [25]. Our model leverages a two-
stream deep learning method to jointly optimize the com-
plementary residuals of both spatial and temporal streams.
Hence, the landmark positions are refined simultaneously
in both spatial and temporal dimensions. However,
REDN [25] learned the spatial and temporal recurrences
sequentially, which makes their framework be sensitive to
the accuracy of previous shape prediction more heavily
than ours.

4 EXPERIMENTS

We conducted experiments on the video-based face align-
ment datasets including 300-VW [34] and TF [1] to evaluate
the effectiveness of the proposed approach.

Datasets. 300-VW [34]: The 300 Videos in the Wild
(300-VW) is a large dataset for video-based face alignment,
which consists of 114 videos in various conditions. Each
video lasts around 1 minute (25-30 images per second). By
following the settings in [34], we utilized 50 sequences for
training and used the remaining 64 sequences for testing in
our experiments. Considering the difficulty of different
video sequences, the testing set is divided for validation,
from easy to hard, into three categories: well-lit, mild uncon-
strained and challenging. We utilized 300-VW [34] training
set to train our temporal stream network and finetuned the
pretrained spatial stream network beforehand.

TF [1]: The Talking Face (TF) video dataset consists of
5,000 frames of a person within a conversation. Due to lack
of data variance, we only evaluated our model on its testing
set, where our model was trained on the training samples
from the 300-VW [34] datasets without using any additional
training set.

Evaluation Protocols. In our experiments, we employed
the standard normalized root mean squared error (RMSE)
and cumulative error distribution (CED) curves for the eval-
uation protocols. The normalized RMSE [31] was employed
for averaged error comparisons. In the experiments, we per-
formed our method on the testing video clips for each iden-
tity for evaluation, and then averaged the RMSE errors for
final performance. We also leveraged the CED curves [46],
[50] of RMSE errors to quantitatively evaluate the perfor-
mance in comparisons to the state-of-the-arts.

4.1 Evaluation on 300-VW

Comparisons with State-of-the-Arts. We compared our TSTN
with both conventional methods which utilize hand-crafted
features and the deep learning-based methods which learn
features directly from pixels. The methods with hand-
crafted features include SDM [46], ESR [7], CFSS [50],
PIEFA [26] and iCCR [32]. The deep learning methods
include TCDCN [49] and REDN [25]. Here SDM [46],
ESR [7], CFSS [50], TSCN [35] and TCDCN [49] were uti-
lized to predict landmarks on still images, while PIEFA [26],
REDN [25], TSCN [35] and iCCR [32] were designed for
video-based face alignment. For SDM [46], CFSS [50] and
TCDCN [49], we conducted experiments with their released
codes in a tracking-by-detection protocol, where 68 land-
marks were employed for evaluation. Since the source codes
are not available for PIEFA [26] and REDN [25], we directly
cropped the results reported in original papers. Note that
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the CED curves of CCR and iCCR of only 66 points were
reported in [32], we re-trained our TSTN by the common 66
points for fair comparisons.

Table 1 tabulates the averaged error comparisons and
Fig. 3 shows the CED curves of TSTN compared with the
state-of-the-art face alignment methods. From these results,
we observe that our model exhibits superior performance
comparedwith the state-of-the-arts on Category One and the
most challenging Category Three. These achievements bene-
fit from the exploited complementary information that
simultaneously encodes both the appearance features on still
images and temporal consistency across frames. Compared
with CCR and iCCR [32], our model achieves promising

results especially in the most challenging Category Three.
This is because our proposed recurrent module automati-
cally memorizes the shape-informative details of previous
frames to flow across frames in an end-to-endmanner. Based
on these historical cues, our model accomplishes making
inferences for the succeeding frames (e.g., occluded parts) to
reinforce the robustness to the variations of the large poses,
expressions, occlusions, etc. Besides, our model largely
outperforms TSCN [35], because the extracted optical flows
in TSCN [35] are hand-crafted which may fall into local
optima. Moreover, the spatial stream in TSCN [35] loses
shape-informative details without considering the shape-
sensitive priors during shape refinement process. Lastly, we

TABLE 1
Averaged Error Comparisons of Our Proposed TSTN with the State-of-the-Art Face Alignment Approaches Including Both

Conventional Hand-Crafted Approaches (SDM [46], CFSS [50], PIEFA [26] and iCCR [32]) and Deep-Learning
Based Approaches (TCDCN [49], TSCN [35] and REDN [25]) on 300-VW Dataset [34]

Methods Model Description Category 1 Category 2 Category 3 Challset [25] -pts Year

SDM [46] Cascaded Linear Regression 7.41 6.18 13.04 7.44 2013
TSCN [35]1 Two-Stream Action Network 11.61 11.59 17.67 - 2014
TSCN [35]1,2 Two-Stream Action Network 12.54 7.25 13.13 - 2014
CFSS [50] Coarse-to-Fine Shape Searching 7.68 6.42 13.67 5.92 68 2015
PIEFA [26] Personalized Ensemble Learning - - - 6.37 2015
REDN [25] Recurrent Auto-Encoder Net - - - 6.25 2016
TCDCN [49] Multi-Task Deep CNN 7.66 6.77 14.98 7.27 2016
TSTN Two-Stream Transformer Net 5.36 4.51 12.84 5.59 -
CCR [32]� Cascaded Continuous Regression 7.26 5.89 15.74 - 2016
iCCR [32]� Cascaded Continuous Regression 6.71 4.00 12.75 - 66 2016
TSTN Two-Stream Transformer Net 5.21 4.23 10.11 - -

For fair comparisons, we used the indices of frames that removed from evaluation according to the 300VW organizers [34].
1To make TSCN [35] adaptive to face alignment, we deployed the mean square loss layers [7], [46] at the top of both steams instead of the softmax [18] loss.
2We revised architecture of the spatial stream in [35] by plugging the proposed sampler module, which explicitly exploits the global shape-preserving prior [7].
�iCCR integrates with an ensemble learning updates rules based on the cascaded continuous regression (CCR) formulation. We compared the results of our TSTN
with CCR and iCCR by the released codes (http://www.cs.nott.ac.uk/	psxes1/) on 300-VW [34], where 66 landmarks were employed for evaluation.

Fig. 3. CED curves of our TSTN compared to the state-of-the-arts on three categories in 300-VW [34] separately. In contrast to the state-of-the-art
methods, our TSTN achieves comparable results in category two and superior performance in category one and the most difficult category three.

Fig. 4. Resulting examples of our TSTN on the 557th video clip in 300-VW [34] Category Three, where the selected tracked subject undergoes severe
poses over time. The bottom subfigure shows that our TSTN exhibits robustness to difficult cases like large variations of facial aspect ratios.
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illustrated some resulting face examples of 300-VW [34] Cat-
egory Three in Fig. 4 along with the RMSE errors across time
steps. Based on these illustrations, we observe our TSTN
demonstrates the robustness to the difficult cases compared
with SDM [46] and iCCR [32], even if facial landmarks
undergo large variances of severe facial aspect ratios.

Influence of Different Weighted Fusion Strategies.We investi-
gated the contributions of different weights for the fusion
strategies. To achieve this, we created several alternative
baselines to study the importance of different weights for b1

and b2 in our objective function, where the sum of b1 and b2
is 1. Specifically, we first specified the parameters b1 ¼ 1 for
the spatial stream and b2 ¼ 1 for the temporal stream of our
model. Then we conducted the experimental comparisons by
setting b1 ¼ f0:8; 0:2; 0:5g andb2 ¼ f0:2; 0:8; 0:5g. Table 2 tab-
ulates the CED values where the RMSE errors are less than
0.05 and 0.1 of our model and other alternative variations on
the 300-VW dataset [34]. According to these results, we see
that the equivalent weighted fusion strategy of both the spa-
tial and temporal streams obtains the higher performance
than other baseline methods, which shows that the comple-
mentary information of both appearance information in the
spatial dimension and consistency information in the tempo-
ral dimension contribute to the alignment performance.

Analysis of Network Decisions. To justify the decisions of
our proposed temporal stream, we created three baselines
as follows (with spatial stream fixed): 1) TSTN-1: directly
feeding cropping patches to regression net across frames; 2)
TSTN-2: discarding h2, making h1 recurrent and directly
feeding h1 to decoder; 3) TSTN-3: directly feeding V to
regression net; 4) TSTN-4: our proposed model. We con-
ducted experiments of our TSTN compared with these base-
lines on the 300-VW fullset and Table 3 tabulates the results.
From these results, we see that our temporal stream with
the proposed modules including encode-decoder, two-layer
RNN and sampler together boost the performance.

Computational Time. Our model was built based on the
accelerated deep learning toolbox TensorFlow [2]. In terms

of the training procedure, we introduce an efficient strategy
for fast convergence. Specifically, we first learned the net-
work parameters of the spatial stream by using all images in
300-W [30]. Then we trained the temporal stream and simul-
taneously fine-tuned the pre-trained spatial stream. The pro-
posed training scheme was roughly 10� faster than training
both streams from scratch. The whole training procedure
requires 15 hours with a GPU of single NVIDIA GTX 1080 Ti
graphic computation card. We also tested our method on the
core-i7 CPU@3.6 GHZ platform. Ourmodel runs nearly at 30
frames per second on CPU (without the face detection part),
which satisfies the real-time requirements in practice.

4.2 Evaluation on TF

We evaluated our method on the TF dataset [1] compared
with the state-of-the-arts such as ESR [7], SDM [46],
CFAN [48], DCNC [37], CFSS [50], IFA [3] and REDN [25].
Since the mark-up annotations of the TF dataset is partially
different with those employed in the 300-VW dataset [34],
we generated 7-landmark annotations including the eye cor-
ners, nose tip and mouth corners to localize the facial land-
marks in our evaluation for fair comparisons. It is noticed
that we only utilized 7 landmarks predicted by the pre-
trained models including CFSS [50] and CFAN [48]. For
other methods, the results were cropped from the original
paper [25]. Table 4 shows the averaged errors of our method
with the state-of-the-art methods, where 7 landmarks were
employed for evaluation. According to these results, we see
that our method outperforms the existing video-based face
alignment methods including PIEFA [26] and REDN [25],
because our TSTN is helpful to video-based face alignment
by exploiting the complementary information of the spatial
appearance and the temporal consistency information.

5 CONCLUSIONS AND FUTURE WORK

In this paper, we have developed a two-stream transformer
networks architecture for video-based face alignment. Spe-
cifically, our model learns to exploit the complementary
information of appearance features on still frames in the
spatial stream and consistency information across frames in
the temporal stream accordingly. The performance of our
method on the benchmarking datasets verifies the effective-
ness of our approach. How to apply learnable weights for

TABLE 2
Comparisons of CED Values Where The RMSEs Are
Less Than 0.05 and 0.1 with Different Specifications

of fb1;b2g on the 300-VW Fullset [34]

Weighted Fusion CEDe< 0:05 CEDe< 0:1

TSTN (b1 ¼ 0; b2 ¼ 0) 38.24% 72.91%
TSTN (b1 ¼ 1; b2 ¼ 0) 65.93% 82.35%
TSTN (b1 ¼ 0:8;b2 ¼ 0:2) 73.89% 87.92%
TSTN (b1 ¼ 0; b2 ¼ 1) 70.29% 92.13%
TSTN (b ¼ 0:2;b2 ¼ 0:8) 78.89% 92.19%
TSTN (b1 ¼ b2 ¼ 0:5) 80.33% 95.87%

We leveraged the fitting results of previous frame as the prediction of current
frame, leading to the baseline method without refinements.

TABLE 3
Comparisons of CED Values Where The RMSEs Are

Less Than 0.05 and 0.1 with Different Network
Decisions on the 300-VW Fullset [34]

Method TSTN-1 TSTN-2 TSTN-3 TSTN-4

CEDe
0:05 60:15% 67:83% 66:26% 70:29%
CEDe
0:10 79:33% 89:76% 88:91% 92:13%

TABLE 4
Averaged Error Comparisons of Our Model with the State-of-the-Arts on the TF Dataset [1],

Where 7 Landmarks Were Employed for Evaluation

Methods ESR [7] SDM [46] CFAN [48] DCNC [37] CFSS [50] IFA [3] REDN [25] TSTN

RMSE 3.81 4.01 3.52 3.67 2.36 3.45 3.32 2.13

The results were directly cropped from the recent work [25]. Our approach achieves very competitive performance compared with the state-of-the-arts.
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the fusion of both streams and it is desirable to squeeze our
networks to boost the efficiency performance, which are
interesting future directions of this work.
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