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Abstract—1In this paper, we present a label-sensitive deep
metric learning (LSDML) approach for facial age estimation.
Motivated by the fact that human age labels are chronologically
correlated, our proposed LSDML aims to seek a series of
hierarchical nonlinear transformations by deep residual network
to project face samples to a latent common space, where the sim-
ilarity of face pairs is equivalently isotonic to the age difference
in a ranking-preserving manner. Since traversal access to total
negative samples catastrophically costs and leads to suboptimal,
our model learns to mine hard meaningful samples in parallel to
learning feature similarity, so that the local manifold of face
samples is preserved in the transformed subspace. To better
improve the performance on the data set that contains few
labeled samples, we further extend our LSDML to a multi-
source LSDML method, which aims at maximizing the cross-
population correlation of different face aging data sets. Extensive
experimental results on four benchmarking data sets show the
effectiveness of our proposed approach.

Index Terms—Facial age estimation, metric learning, deep
learning, residual network, biometrics.

I. INTRODUCTION

ACIAL age estimation has been widely used in various

applications such as facial attributes detection, visual
advertisements and biometrics [1]-[5], which attempts to
predict exact age values for given facial images. While
extensive efforts have been devoted to facial age estimation
areas, the performance is still not satisfied in practice due
to the variances of diverse facial expressions, aspect ratios,
clutter background and partial occlusions, especially when
face images were captured in wild conditions (as shown
in Fig. 1). Moreover, facial age estimation usually encounters
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Fig. 1. The cropped face samples from the uncontrolled face aging dataset,
where the number below each face image is the apparent age value. We see
that the face samples in this dataset usually undergo challenging situations due
to diverse facial expressions, aspect ratios, cluttered background and partial
occlusions.

predicting ambiguity due to correlated age classes. In this
paper, we consider exploiting the label correlation in a deeply
embedded subspace, where the feature similarity of face pairs
is smoothly sensitive to the age difference values.

Recently, many approaches have been proposed to improve
the performance for facial age estimation [6]—[10], which can
be roughly divided into two categories: face representation-
based [6], [7], [11] and age estimator-based [9], [12], [13].
However, feature descriptors for face representation employed
in previous methods are usually hand-crafted, which may
loss crucial information and requires expert knowledge by
hand. To address this, feature learning [14], [15] has been
proposed, which learns discriminative filters directly from raw
pixels for robust age-related face representation. While these
data-driven methods outperform hand-crafted features, they
are still not satisfied in practical applications because these
simple linear filters are not powerful enough to exploit the
nonlinear relationship between face samples and age labels,
especially when face samples were captured in the uncon-
trolled environments. To address this limitation, deep learning-
based techniques [16]-[19] have been applied to learn a series
of hierarchical nonlinear mappings via stacked deep neural
networks to transform the input face images to the age label
space. For example, Yi et al. [16] developed a multi-scale
framework to learn deep face representations to predict the
age value with the auxiliary gender and ethnicity information.
Niu et al. [19] proposed an ordinal regression method via
deep convolutional neural networks to exploit the age order
information. While very competitive performance has been
obtained, learning parameters for the leveraged deep archi-
tectures catastrophically costs and might lead to suboptimal
due to the imbalanced positive and negative samples during
training process.
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Fig. 2. The work-flow of our proposed LSDML. Specifically, we first pass
a mini-batch forward the designed deep residual network, and then select a
subset of hard quadruplets. Having obtained the mined hard samples, our
model enforces the relationship within each quadruplet in a transformed
subspace, where the hard positive samples are pushed as close as possible, and
at the same time hard negative samples are pushed larger than a label-sensitive
threshold. Note that both the tasks of mining hard examples and learning
feature similarity are jointly optimized to reinforce our model.

It is widely observed that effective data sampling tech-
niques [20], [21] are crucial to ensure the quality and efficiency
for robust feature similarity. Inspired by this, we propose
a label-sensitive deep metric learning (LSDML) method for
facial age estimation, which jointly optimizes both procedures
of mining hard examples and learning discriminative metric
in a unified deep architecture. Fig. 2 illustrates the work-
flow of the proposed LSDML. Specifically, our LSDML aims
to learn a series hierarchical nonlinear mappings via deep
residual network to transform raw face images to a latent
common subspace, where the inter-class compactness and
intra-class separability are exploited. Moreover, our model
learns to exploit the label correlation in the transformed
subspace, so that the distance of face pairs with different
age differences is smoothly measured according to the degree
of age difference. To make the process of feature similarity
learning more efficient, we propose a sampling strategy to
select meaningful hard examples on parameter update during
the back-propagation process. As a result, both tasks of
feature similarity learning and hard samples mining are jointly
optimized in an end-to-end manner. To further enhance the
discriminativeness of the learned metric, we present a multi-
source LSDML method by maximizing cross-population cor-
relation of multi-source datasets, which considerably addresses
the limitation of few labeled training samples in some face
aging datasets. Experimental results on four face benchmark-
ing datasets in both controlled and uncontrolled environments
show the superior performance in comparisons to the state-of-
the-art facial age estimation methods.

The contributions of this work are summarized as follows:

1) We propose a label-sensitive deep metric learn-
ing (LSDML) method to learn a discriminative distance
metric under the paradigm of deep residual network,
where the inter-class separability, intra-class compact-
ness, and label correlation of age classes are simultane-
ously exploited to faithfully characterize the true feature
similarity for face aging data.

2) To make the learned similarity more effective and effi-
cient, we develop a hard example mining strategy,
so that the local manifold structure of input data points
is exploited in the learned metric space. Moreover,
we jointly optimize both the tasks of learning label-
sensitive feature similarity and mining hard samples
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directly from image pixels, which exploits the comple-
mentary information for both tasks to reinforce our model
in an end-to-end manner.

3) We extend our proposed LSDML to a multi-source
LSDML method, which attempts to maximize the cross-
population correlation between different face aging
datasets to enhance the robustness and discriminativeness
of the learned feature similarity.

II. RELATED WORK

In this section, we review two related works including facial
age estimation and deep metric learning.

A. Facial Age Estimation

Existing facial age estimation methods [9], [12], [22]-[24]
can be categorized into two classes: face representation-
based and age estimator-based. The representative face
representation-based methods include the holistic subspace
feature [25], [26], local binary pattern (LBP) [7] and
the bio-inspired feature (BIF) [11]. The representative age
estimator-based methods include age pattern regression [22],
multi-task warped Gaussian process (MTWGP) [23], ordinal
hyperplane ranking (OHRANK) [9] and label distribution
learning (LDL) [12]. However, the face descriptors employed
in previous methods were designed by hand, which requires
strong prior knowledge and even performs degraded perfor-
mance when face samples were captured in wild conditions.
To overcome this limitation, feature learning-based meth-
ods [15], [24], [27] have been proposed to learn robust face
descriptors for age estimation. For example, Fu et al. [14]
proposed a holistic feature learning method by using a dis-
criminative manifold learning technique. Lu et al. [15] devel-
oped a cost-sensitive local binary feature learning method
for facial age estimation. However, the performance is still
far from the satisfactory, because the employed linear fea-
ture filters are not powerful enough to exploit the nonlin-
ear relationship of face aging data, especially when faces
were exposed to large variances of facial expressions and
even partial occlusions (e.g., make-up, wearing glasses, etc.).
To address this nonlinear issue, deep learning has been applied
for facial age estimation [19], [28]-[32], which aims to learn
a set of nonlinear feature transformations and achieves the
nonlinear relationship between face samples and age labels.
For example, Levi and Hassner [29] proposed a multi-task
framework via deep convolutional neural network to jointly
address the age and gender classification in a unified deep
learning framework. Yang et al. [33] employed deep scattering
transform networks (DeepRank) to predict ages via category-
wise rankers. Niu et al. [19] developed an ordinal regression
by the convolutional neural network (OR-CNN) method with
multiple binary outputs for age estimation. While promising
performance has been obtained, these methods ignore to take
advantages of sampling effective data points, so that the train-
ing procedure is time-consuming and may incur suboptimal
because of the unbalances positive and negative samples.
To circumvent this problem, we propose a label-sensitive
deep metric learning method to automatically learn to select
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hard samples on parameter update during back-propagation
procedure. With the learned metric, the label correlation of
aging pattern is exploited in the embedded feature space, and
at the same time hard meaningful examples are captured,
which makes the learned similarity metric more robust and
discriminativef and leads to fast convergence.

B. Deep Metric Learning

Recent years have witnessed that deep metric learn-
ing has received much attention in the research fields of
machine learning and computer vision due to its superior
performance [34]-[40], which aims to optimize both tasks of
learning nonlinear subspace and embedded feature similar-
ity by leveraging different deep architectures. For example,
Bromley et at. [35] and Chopra ef al. [36] trained Siamese
networks via deep neural networks for signature and face
verification. Hu et al. [37], [38] proposed two deep metric
learning methods including the discriminative distance met-
ric learning (DDML) and the deep transfer metric learn-
ing (DTML), which aim to transform similar input objects on
a manifold and dissimilar objects apart from each other by the
triplet [41] loss. To further mine the high-order and structural
relations of the local manifold structure for input data points,
Song et al. [39] and Huang et al. [40] developed deep feature
embedding approaches by leveraging the quadruplet-based
comparisons [42], which significantly promotes the accuracy
for image classification and retrieval. However, these deep
metric learning methods ignore to explicitly exploit the label
correlation for the specific classes, which cannot be directly
applied on facial age estimation because the age labels of
target variables exhibit a natural ordering in the real-world
applications.

In contrast to previous methods, we propose a label-sensitive
deep metric learning method to measure the face samples in
a transformed subspace depending on the smoothing degree
of age difference, in addition to optimizing both the intra-
class compactness and inter-class separability under a unified
deep neural network framework. To overcome the limitation
of full access to negative samples, we develop a hard example
mining strategy to automatically discover the semantic and
meaningful violated samples during the training procedure,
which efficiently reduces the computational cost and leads
to fast convergence. Besides, we introduce a multi-source
LSDML method to maximize the cross-population correlation
between different datasets, which circumvents the problems of
missing labels and unbalanced training samples across a large
range of age classes.

ITI. PROPOSED APPROACH
In this section, we describe the proposed approach includ-
ing label-sensitive deep metric learning (LSDML) and the
extension of multi-source LSDML (M-LSDML) in details,
respectively. Moreover, we present the differences with some
related works compared with our proposed approach.

A. LSDML

To learn robust and discriminative feature similarity for
facial age estimation, the basic idea of our LSDML is to

exploit the label correlation among face samples in the
transformed subspace. Unlike recent deep metric learning
methods [37], [38] which utilize hand-crafted features to
be fed to the deep networks, our model jointly optimizes
both tasks of learning similarity and embedding features for
face representation in a unified deep architecture. Let X =
{(x;, yi)}f.V: | denote the training set which consists of N sam-
ples, where x; € R? denote the ith face image of D pixels and
y; € Rl is the groundtruth age value, respectively. Our model
is to compare the distance of face pairs by computing the
feature representation f(x;) for the ith face image x; via deep
neural networks. In terms of network architecture, we employ
the residual learning method to optimize the whole network
parameters, which have achieved superior performance in a
volume of visual recognition tasks [43]. To better measure the
learned face descriptors, we apply L, normalization on the
obtained outcomes from the fully connected layers.

By feeding the face data to the designed network, we com-
pute the similarity for each face pair of f(x;) and f(x;) as
follows:

dr(xi,x;) = || f(xi) — f(x))ll2, (D

where || - ||2 denotes the Euclidean distance beyond the learned
embedded metric parameterized by f(-). The deep feature
embedding for face representation is computed as:

f(x;) = pool (ReLUW ® x; + b)), 2)

where ® denotes the convolution operation, pool(-) denotes
the max pooling operation, an ReLU(-) denotes the rectifier
nonlinear function.

The crucial part of our LSDML is to learn the network
parameters f(-). To achieve this goal, we first pass a given
mini-batch forward the deep network, and we select each
quadruplet of (i, j, k, ), such that (x;,x;) € P, (x;,xx) € N
and (xj,x;) € N, where P and N denote the positive and
negative pair set, respectively. More details are illustrated
in Fig. 3. Moreover, to achieve the discriminativeness of the
feature similarity, our LSDML enforces each d(x;,X;) pair
in positive set is close to each other, and at the same time
dr(x;,x;) and dy(X,X;) in negative set is pushed far away.
As a result, the distance of inter-class pairs is minimized,
and the distance of intra-class pairs is larger than a margin
7 in the transformed subspace. To better measure the age
difference information, we design a smoothing function C (-, -)
to measure the degree of any two age labels as follows:

-i—yj )?

C(yi,yj) =exp # , ©)

where H denotes the label difference threshold to determine
the variance of age label distribution.

For the computational efficiency for sampling during train-
ing process, our LSDML automatically learns to select hard
meaningful examples, so that the local manifold of face
samples is preserved in the transformed subspace. Specifically,
we first feed the mini-batched data to the designed deep
network and then compute the feature descriptors for face rep-
resentations. Having obtained these features, we select a hard
quadruplet of (i, ],k 1), where the positive pair dy(x;, X7)
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Fig. 3. The detailed learning procedure of our LSDML. First, our LSDML
is fed with a mini-batch to the designed deep residual network. Then,
to involve with both tasks of label-sensitive metric learning and hard negatives
mining, our model aims to optimize: 1) intra-class separability and inter-class
compactness; 2) isotonic similarity to the age difference degree, and 3) mining
quadruplets of hard negatives. In this way, our model learns to mine hard
negatives to preserve the local similarity of the data samples, so that the label
correlation for ages is exploited in the embedded metric space. Note that the
parameters of all ResNet-101 architectures are shared and optimized via the
standard back-propagation method.
is with a largest similarity score, and both the negative pairs
dy ('x;., x,;)' E.md dy (x]c, x;) are with smaller similarity. scores
during training process. Then our model focuses on optimizing
these selected hard examples and the network parameters are
learned via the back-propagation process. As a result, both
tasks of learning feature similarity and mining meaningful hard
examples are addressed simultaneously in a unified framework.
We will present the formulation and optimization procedure in
the following.

We formulate the objectives of our LSDML, which aims to
minimize the following optimization problem:

mfin J=h+Ah+ulkz

> (82,;; + ff,i) +22 P+ HIWIE,

(@.J.kD) (@)
subject to  max_ (O, T —dy(x;,x)C(y;, y,;))2 <&
(.kyeN ’
2
max (0, T —dr(x5,x)C(ys, yA)) <e€:p
(f,f)eN j2 ol j 7l J,l
max (0,dy(x;, X;))2 =P
@,))eP
e120, €;20, p;:>0, “4)

where € 0 €500 P denotes the latent variables, 7 denotes the
thresholding margin (assigned to 1 in our experiments) and the
hard quadruplet (f, f,l%,lA) is selected by following violated
criterions:

(@, j) = argmax  d}(x;,x7),

@.))eP

k= arg min djzc(xlf,xlg),
(e

[ = argmip d}(x;,xi),
(.heN
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where f(x) denotes the deep feature embedding from raw
face image, f(-) is the learned deep network parameterized
by {W, b}, 1 is used to balance the inter-class compactness,
the intra-class separability, x# denotes the regularization term
and W) ||% denotes the Frobenius norm of matrix W to
prevent the network parameters from overfitting.

There are four objectives for (4):

1) Ji in (4) ensures that the distance of negative face pairs is
maximized larger than a threshold, while J, in (4) ensures
the distance of positive face pairs is minimized. As a
result, both the inter-class compactness and the intra-class
separability is exploited simultaneously in the learned
feature similarity.

2) The proposed measurement C(-,-) in J; of age label
degree is applied to smooth the negative face pairs with
different age value gaps. Hence, the ranking information
and correlation of age labels is embedded in the trans-
formed subspace.

3) For each mini-batched data, the hard samples are mined
during the network optimization process. Moreover,
the violations of training samples are optimized and back-
propagated to the previous layers, so that the manifold of
face samples is preserved locally in the learned subspace.

4) The joint terms jointly optimize both tasks of learning
feature similarity and mining hard examples in a ranking-
preserving manner. This enables us to jointly optimize the
two that benefit each other, and the hard example-aware
sampling method improves the computational efficiency
during training process.

To optimize (4), we leverage the standard back-propagation
method to update the parameters literately. To achieve this,
we reformulate our objective function as follows:

mfin J=h+ A+ ulz

= Z [ max (O, T —df(X;,X,;)C(yf»}’;;))z

GIAD (i,kyeN
2
+ max_ (0, T — df(X;,Xj)C(y;,yj))
(j.l)yeN
2
+4 max_(0.d 0. %)) 1+ ulWIE. (5)
@,))eP

Since each learned face descriptor f(x) is L, normalized,
we can conveniently derive the gradients for the face dis-
tance d} (xi,x;). Note that the optimization mainly depends
on violated quadruplets which cannot satisfy the expression
evaluates in max(-) to true and outputs 0 otherwise. Having
obtained the gradients, the network parameters W and b are
updated by using the gradient-decent algorithm as follows until
convergence:

w=w_, (6)
- ”awa

b=b—nt 7)
P

where 7 is the learning rate, which controls the convergence
speed of the objective function J.
Algorithm 1 shows the optimization procedure of LSDML.
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Algorithm 1 LSDML

Input: Training Set: X = {(x;, y,-)}fvzl, H=5 1=04
and x = 0.001, 7.

Output: Network Parameters {W, b}.

Step 1 (Parameters Intialization): Initialize the
parameters {W, b} by pretrained models such as
ResNet-101 [44].

Step 2 (Optimization via Back-Propagation):

repeat

2.1 Passing a mini-batched data forward the designed

deep neural networks (i.e., ResNet-101), and
select hard quadruplet @, f, k, i).

2.2 Performing backward propagation and compute

the gradients.

for (i, j) € P do

ad> (%;,X5)
ey < ad%((ax];,x;) ey
oJ oy 0digx))

T T gy A

for (2,12) e N do

2
ol o) %rGexp)
af(xi) ad% (X:.,X,;) af(xi)
X 2
aJ ady (x3,%¢)

aJ
< .
of (xp) ad7 (x;,xp)

for (j,1) € N do
aJ ad}(x;.%)

of (xp)

aJ .

TN T adla) UG)
ol ol 0 (x;.x))

af(xj) 3d}(x;,xi) 3f(Xi)

23 Updating the parameters according to (6) and (7).
until convergence or reaching the maximum iteration T

Return: {W, b}.

B. Multi-Source LSDML

In this subsection, we extend our LSDML to a multi-source
LSDML (M-LSDML) framework for facial age estimation.
Since it is difficult to densely collect face samples which cover
a large range of age labels in the real-world applications, there
exists few labeled samples belong to some age labels, which
may bias data distribution for certain age classes. To address
this problem, grouping age labels techniques [4], [45] have
been proposed to split age pattern by a series of age groups
and exploit the smoothness between the neighbouring groups.
However, these methods are hand-crafted, which may destroy
the real-world aging pattern in the cross-population datasets.
To circumvent this problem, our M-LSDML aims to learn
the label-sensitive feature similarity by including more than
one source face aging dataset that is available for training.
To achieve this, our proposed M-LSDML is to maximize the
correlation of different source datasets as illustrated in Fig. 4,
which reinforces the robustness and discriminativeness of the
learned feature similarity by exploiting the label correlation.

Suppose we have M, cross-population training datasets, our
model aims to maximize the correlation of the multi-source
datasets as targets as well as among all source population.

Source 1

- - e % /,/
*xeo = X ®®
& T XS Multi-Source LSDML 8 L XS
% B
Source 2 Multi-Source Cross-Population
Samples in transformed subspace
Fig. 4. The illustration of the proposed multi-source LSDML framework,

which aims to learn a label-sensitive and discriminative feature similarity by
utilizing multi-source datasets. Specifically, our multi-source LSDML aims
to maximize the correlation of different datasets via deep network, which
reinforces the discriminativeness of the feature similarity in the transformed
subspace.

Hence, we formulate the objective function as follows:
mfin] =J1+ AL+ ul3

My M
=D 30| 2 (e i)+ Ao |+ IWIE,
s=1t=s+1 (;,]A,]gj) (;,]A)
subject to (G, j.k,) e NyUN;, (i, ])ePsUP;,

2
max_ (0,7 —dp(x;,x)C 03 ))” < 14
(i,kyeN

2
max (05 T = df(X?’ XA)C()“, yA)) <€:q,
(GdeX e &
max (0,dy(x;, x;))Z <P
@,))eP

e220, €;20, p;5>0,

i, )= arg max d% (x;, x]f),
()P
k= af%mip d}(x;, X;)s
@i,k)eN
[= arg min d]% (xjc, X;), )
(f,i)eN
where f(f > 0) denotes a hyper-parameter to balance these
terms, and the sets of N, N;, Py, P, denote the face pair
sets which are drawn from the union of any two multi-source
indexed by the sth and rth datasets.

To solve the optimization problem in (8), we leverage the
stochastic gradient-decent method to compute the gradients
and update the parameters. With the learned label-sensitive
similarity, the label correlation is smoothly preserved in
the learned transformed subspace thanks to the discrimina-
tive knowledge captured from multi-source cross-population
datasets. Moreover, the bias of training samples is effi-
ciently removed by maximizing the correlation of multi-source
datasets. We will show the effectiveness of our M-LSDML on
multi-source facial age estimation datasets in our experiments.

IV. EXPERIMENTS

In this section, we evaluated the performance of the pro-
posed approach on four standard face aging datasets including
the MORPH (Album?2) [46], FG-NET [22], FACES [47],
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AdienceFaces [48] and Chalearn [49] datasets. In particu-
lar, the face samples in both Chalearn [49] and Adience-
Faces [48] datasets were captured in wild conditions, so that
they undergo various challenging situation such as different
facial expressions, aspect ratios, clutter background, scale
variations, in-plane rotation and diverse partial occlusions.

A. Datasets

1) MORPH (Album 2) [46]: This dataset consists of about
55000 face images ranging from 16 to 77 years old, which
is a large scale publicly dataset annotated with accurate age
values. There are averaging 3 samples per person, and the
age gap is averagely 1.3511.65 years per person. Hence, only
a short-term growth process is gathered for each individual.
There are many ethnicity (White, Black, Hispanic, Asian, and
others) in this dataset.

2) AdienceFaces [48]: The dataset consists of 26,580 face
images belonging to 2,284 subjects, where these samples were
manually labeled by the age groups (0-2, 4-6, 8-13, 15-20,
25-32, 38-43, 48-53, 60-100) and a subset of age values
such as 3, 35, 55, etc. All images were captured in the wild
conditions, which undergoes the variations of appearances,
noises, large poses and partial occlusions.

3) FG-NET [22]: This dataset consists of 1002 images
with 82 persons and there exists averaging 12 samples for
each person. The age range covers from 0 to 69. For every
person, the age gap is averagely 27.80411.75 years, reflecting
a relatively long-term growth detail of the person. The face
samples in the dataset encounter large variations in aspect
ratios, illumination and diverse expressions.

4) FACES [47]: This dataset contains 2052 face images
from 171 persons. The age range covers from 19 to 80 years
old. For each person, there are six expressions including
neutral, sad, disgust, fear, angry and happy. The large variances
of diverse facial expressions bring label ambiguity for age
predicting.

5) ChaLearn [49]: This dataset is drawn from the apparent
age estimation challenge [49], which contains 5000 images
for training and 1500 images for validation. The age range
covers from 0 to 100 years old, which were collected from
social networks. The face images suffer from large variations
of diverse facial expressions, poses and partial occlusions.
Each face in the dataset was labeled by ten persons, and the
mean apparent age and the standard deviation were used for
annotation.

B. Experimental Settings

Before evaluation, we detected facial bounding boxes for
each given facial image via the DLIB [50] image process-
ing library. Then we resized the detected faces to the size
of 224x224 that matches the input dimension D of the
employed deep networks. For each facial image, we detected
three landmarks including two centers of eyes and the nose
base to align the face into the canonical coordinate system by
using affine transformation. Since our approach aims to learn a
transformed subspace to measure the feature similarity of face
pairs, we passed the given facial image to the learned network
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and compute the descriptors for face representation. Having
obtained these face features, we trained an age estimator
by OHRANK [9] and then obtained exact age values for
evaluation. It should be notified that we trained the OHRANK
by utilizing only single-source dataset under the M-LSDML
evaluation setting for fair experimental comparisons.

C. Implementation Details

The proposed methods were implemented under the open
source CAFFE [51] deep learning toolbox, which has been
widely used for the deploying and evaluation for deep archi-
tectures. For the hyper-parameters employed in our proposed
LSDML, we set H = 5, 1 = 0.4 and ¢ = 0.001 by
cross-validation. The residual network [44] consists of a
series of small 3 x 3 receptive fields (convolution layers),
pooling operations and the nonlinear ReL.U rectifier function.
In particular, the residual network was equipped with a skip-
connection (identity module), which memorized the residual
estimation and avoid decent vanishing though the very deep
architecture. Note that we flattened the feature maps of last
layer and then adopted one-layer fully connections to reduce
them to 50-dimension feature vector. For the hyper-parameters
of the network, we specified the values of the weight decay,
moment empirically to 0.0001, 0.9, respectively. The learning
rates in the training stage were tuned and decreased over the
interval of every 1000 epochs. The whole training procedure
converged until the validation error remained minimized and
unchanged. Lastly, we randomly oversampled all face images
during training process by horizontal flipping and shuffling
to generate more training samples to reinforce the network
generation. It is important to initialize the networks parameters
W and b, where m denotes the layer number of the deep
networks. In our experiments, we initialized the parameters
of the remaining layers by utilizing the pretrained deep net-
works, and leveraged the uniform distribution [52] to initialize
W and b,

D. Evaluation Protocols

1) Mean Absolute Error: For the evaluation metrics, we uti-
lized the mean absolute error (MAE) [1], [19], [25], [33] to
measure the error between the predicted age and the ground-
truth, which is computed as follows:

N ~
I Hyi -y ”2

== N ©)

where § and y* denote predicted and ground-truth age value,
respectively, and N denotes the number of the testing samples.

2) Cumulative Score Curve: We also applied the cumula-
tive score (CS) [23], [24], [26], [33] curve to quantitatively
evaluate the performance of age estimation methods. The
cumulative prediction accuracy at the error € is computed as:

n

K
CS(n) =~ x 100% (10)

where K is the total number of testing images, K, is the
number of testing images whose absolute error between the
estimated age and the ground-truth age is not greater than n
years.
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TABLE I

COMPARISON OF MAEs OF OUR APPROACH WITH DIFFERENT STATE-OF-THE-ART APPROACHES ON THE MORPH DATASET

[ Methods [ Model Description [ MAE | Year |
BIF+KNN - 9.64 -
AGES [1] AAM + facial aging pattern 8.83 -
MTWGP [23] AAM + Multi-task warped Gaussian progress regression 6.28 | 2010
BIF+OLPP [53] Age estimation cross age and gender 420 | 2010
CS-LDA [54] Cost-sensitive subspace learning 6.03 | 2010
Raw+OHRANK [9] Paw pixel + Ordinal Hyperplane Ranking 7.34 | 2011
LBP+OHRANK [9] LBP + Ordinal Hyperplane Ranking 6.88 | 2011
BIF+OHRANK [9] BIF + Ordinal Hyperplane Ranking 6.49 | 2011
CS-FS [55] Cost-sensitive feature selection 6.59 2012
IIS-LDL [12] AAM/BIF + label distribution learning 5.69 2013
CPNN [12] AAM/BIF + label distribution learning 5.67 2013
CA-SVR [56] AAM-+cumulative /joint attribute learning 4.87 | 2013
MFOR [57] Multi-feature ordinal ranking 5.88 2013
rKCCA [58] Multi-model canonical correlation analysis 3.98 2014
rKCCA + SVM [58] | Multi-model canonical correlation analysis + SVM classifier | 3.91 2014
CS-LBFL [15] Cost-sensitive local binary feature learning 4.52 2015
CS-LBMFL [15] Cost-sensitive local binary multiple feature learning 4.37 | 2015
CS-OHR [59] Cost-sensitive ordinal hyperplane ranking 3.74 | 2015
DeepRank [33] Scattering transforms + ordinal hyperplane ranking 3.57 | 2015
DeepRank+ [33] Scatter transforms + ordinal hyperplane ranking 349 | 2015
OR-CNN [19] Ordinal regression with deep convolutional networks 3.27 | 2016
LSDML Label-sensitive deep metric leaning 3.08 -
M-LSDML Multi-source label-sensitive deep metric leaning 2.89 -
E. Evaluation on MORPH (Album2) 100
) == "._ o=
In our settings, we performed five folds cross-validation 80 'r" »
of our proposed approach on the MORPH (Album?2) dataset. o ’)'/ Ped
Specifically, we divided the whole dataset into five equal-size ® ,’ & i
. Q
folds. Then we used one fold (20% of total data) as the testing g 80 7 ; ’
o . 4
set and the other four folds (80% of total data) as the training % 50 i »
set. We repeated this procedure ten times and finally averaged 2 40 AV CSLBNFL
the results as the facial age estimation results. 3 5 // / Y -8 CS-LBFL
== BP+OHRANK
1) Comparisons With the State-of-the-Art Methods: Py me=BIF+KNN
We trained our LSDML with the training set of 10 o IS OHRANK
MORPH (Album 2). Table I tabulates the MAEs and 0 | | | [mm=M-LSDML
Fig. 5 shows the CS curves of our LSDML in comparisons to 0 2 4 6 8 10
the state-of-the-art age estimation methods with the standard Error Level
evaluation protocol, respectively. From these results, we see  Fig. 5. The CS curves of our approach compared with different facial age

that our LSDML achieves higher age estimation performance
than the state-of-the-art features such as raw pixels, local
binary patter (LBP) [7] and bio-inspired feature (BIF) [11].
This is because our LSDML learns discriminative face
descriptors directly from raw pixels, which achieves label
correlation for ages and robustness to large variations of
face images in unconstrained environments. Compared with
the feature learning-based methods such as CS-LBFL [15]
and CS-LBMFL [15], our LSDML demonstrates better
performance, which achieves the nonlinear relationship
between the face samples and consecutive age labels. We also
compared our proposed LSDML with the deep learning-based
methods including DeepRank [33], DeepRank+ [33] and
OR-CNN [19] that utilized deep neural networks. As results
shown in Table I and Fig. 5, we see that our method
consistently outperforms those deep models on this dataset,
which shows the effectiveness of the proposed LSDML, where
the complementary information of label-sensitive similarity

estimation methods on the MORPH dataset.

learning and hard examples mining is exploited to reinforce
our model.

Moreover, we evaluated the proposed M-LSDML by uti-
lizing the MORPH (Album2), FG-NET, ChaLearn, FACES as
the multi-source training face data. Specifically, we trained our
M-LSDML model by leveraging MORPH (Album?2) training
samples, FG-NET, ChaLearn, FACES and LIESPAN datasets,
and the MORPH testing data were used for evaluation.
As the results are shown in Table I and Fig. 5, we find out
that M-LSDML outperforms LSDML by about 0.25 years
old in terms of the MAE performance. This is because
our M-LSDML maximizes the correlation of the auxiliary
cross-population datasets in order to learn more robust and
discriminative feature similarity, while our LSDML trained in
single-source dataset that biases data distribution across a large
range of age classes.
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TABLE II

COMPARISON OF MAEs OF OUR APPROACH WITH DIFFERENT DEEP
METRIC LEARNING METHODS ON THE MORPH DATASET

l Methods [ MAE [ CEDggl [ CEDQSE, l
Contrastive Loss [36] 3.72 20.5% 67.1%
Triplet Hinge Loss [37] 3.59 24.6% 73.4%
Lifted Structural Loss [39] 3.24 30.3% 81.0%
LSDML 3.08 32.7% 82.9%
M-LSDML 2.89 38.2% 86.1%

2) Comparisons With Different Deep Metric Learning Meth-
ods: To demonstrate the effectiveness of the learned metric,
we conducted experimental comparisons with different deep
metric learning methods including contrastive loss [36], triplet
loss [41] and lifted structural loss [39]. To fairly compare
our LSDML model with previous metric learning methods,
we directly deployed the loss functions at the top of ResNet-
101 and fine-tuned the network parameters via the back-
propagation method. Table II qualifies the MAE and CED
curves performance of our LSDML in comparisons to the
other deep metric learning methods. According to these results,
we see that our LSDML consistently outperforms the state-
of-the-art deep metric learning methods which also utilize
the large margin constraints on the similarity of face pairs.
The main reason is that our LSDML achieves age difference
information in the learned metric space, while the state-of-the-
arts consider the feature similarity equivalently which ignores
the age correlation and performs worse than our LSDML.
In particular, compared with the quadruplet-based lifted struc-
tural technique, our LSDML performs better performance,
because our model automatically achieves useful and age-
adaptive information in the embedded subspace.

3) Comparisons  With  Different  Network  Architec-
tures: We investigated the performance effects of tuning
different network architectures with our LSDML. Specifi-
cally, we compared our model with existing deep networks
including SqueezeNet [60], AlexNet [61], GoogleNet [62],
LightenCNN [63] VGG-16 Face Net [64] and ResNet-101
Face Net [44]. In particular, the SqueezeNet, AlexNet and
GoogleNet were pretrained by a large scale of ImageNet [61]
images, while the LightenCNN, VGG-16 and ResNet-101
were pretrained by face images. Before evaluation, we rescaled
the raw inputs as the required dimension of each net-
work. To be specific, we resized the face image as the
size of 227x227 for AlexNet, 128x128 of gray images for
SqueezeNet and LigntenCNN, and 224 x224 for VGG-16 and
ResNet-101 networks. We discarded the last classification
layer and fine-tuned these mentioned networks by our pro-
posed loss function. Note that we updated the total parame-
ters through the whole network during the back-propagation
process. Table III tabulates the results of performance effects
with different deep networks based on our method. From
these results, we have gained two observations: 1) the very
deep network VGG-16 and ResNet-101 pretrained by face
images outperforms those pretrained by ImageNet data, and
2) very deep face networks including VGG-16 and ResNet-101
architectures significantly improve the facial age estimation
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TABLE III

COMPARISON OF MAEs OF OUR METHOD COMPARED WITH DIFFERENT
DEEP NETWORKS ARCHITECTURES ON THE MORPH DATASET

[ Methods | Network Architectures [ MAE |
SqueezeNet Compressed Network [60] 3.89
AlexNet AlexNet [61] 3.72
GoogleNet Inception V3 [62] 3.49
LightenCNN | Squeezed Maxout for Face [63] | 3.97
VGG-16 VGG Face Net [64] 291
ResNet-101 ResNet-101 for Face [44] 2.89

TABLE IV

COMPARISON OF MAEs OF OUR APPROACH WITH DIFFERENT
AGE ESTIMATORS ON THE MORPH DATASET

[ Methods | MAE |
ResNet-101 [44] + KNN 471
ResNet-101 [44] + Single Label 3.55
ResNet-101 [44] + Gaussian Label 3.29
ResNet-101 [44] + OR-CNN [19] 3.33
ResNet-101 [44] + LSDML 3.08
ResNet-101 [44] + M-LSDML 2.89

performance. It is valuable to note that ResNet-101 trained
by augmented face samples by a 3D morphable face model,
which obtains very outperformed performance compared with
VGG-16 face model pretrained by millions of face data.

4) Comparisons With Different Age Estimators: We inves-
tigated the performance effects of our LSDML with different
facial age estimators. To fair comparisons, we firstly created
the baseline method by ResNet-101 [44] and KNN. It is
notified that we directly passed face images forward to ResNet
and obtained the face representation. Then, we deployed the
softmax loss [61] as the single label method, and the deep
label distribution learning [65] as the Gaussian label methods
at the top of ResNet-101 [44] and finetuned these networks.
Moreover, we compared our model with the state-of-the-arts
facial age estimation method OR-CNN [19] which leverages
deep convolutional networks to learn age-informative fea-
ture representation. As the results are showed in Table IV,
we see that our model achieves better performance in compar-
isons with the other baselines. Even our method outperforms
OR-CNN [19], which demonstrates the effectiveness of jointly
optimizing both tasks of our label-sensitive metric learning and
hard example mining in order to benefit the complementary
information from each other.

5) Computational Time: Lastly, we compared the computa-
tional time of our approach which cooperates with quadruplet-
based hard example mining. First, we created hard quadruplet
mining based on Euclidean distance space as the baseline
method. As shown in Table V, we see that our proposed
method achieves about 1.5x faster convergence speed com-
pared with the baseline method. Moreover, our LSDML copes
comfortably with the violated hard samples, so that the local
manifold for the input data points is preserved in the learned
metric space. These results also demonstrate the advantages of
the proposed sampling strategy in our LSDML, which aims to
optimize the hard meaningful examples on the update process
of the network parameters during back-propagation process.
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TABLE V

COMPUTATIONAL TIME OF OUR APPROACH WITH OUR PROPOSED
QUADRUPLET+LSDML VERSUS QUADRUPLET+EUCLIDEAN
ON TRAINING PROCESS ON THE MORPH DATASET

[ Methods | Training Time | Epoches |
Quadruplet+Euclidean [39] ~30 h 12000
Quadruplet+LSDML ~24 h 8000
TABLE VI

COMPUTATION TIME OF OUR METHOD COMPARED WITH DIFFERENT
NETWORK ARCHITECTURES IN THE MORPH DATASET UNDER THE
GPU WITH NVIDIA GTX 1080. NOTE THAT DFD, LQP, RICA
AND CS-LBFL WERE TESTED ON CPU PLATFORM

[ Methods | Testing Time (imgs/s) |
DFD [66] 2
LQP [67] 10
RICA [68] 35

CS-LBFL [15] 20
SqueezeNet [60] 3582.6

AlexNet [61] 2425.3
LightenCNN [63] 2173.2
GoogleNet [62] 346.2
ResNet-101 [44] 256.8

VGG-16 [64] 143.2

We also investigated the computational time with different
deep networks based on the efficient Caffe [51] toolbox,
and the whole architectures were built on a speed-up par-
allel computing GPU with NVIDIA GTX 1080. Table VI
tabulates the comparisons of the computational time during
the testing phase. From these results, we see that the deep
architectures achieve the real-time age estimation with a GPU
for the feature extraction procedure. In addition, we carefully
implemented the OHRANK by following the details provided
in [9]. The OHRANK takes 0.04 seconds by using an Intel i5-
CPU@3.20GHz PC, which also satisfies the real-time require-
ments.

F. Evaluation on AdienceFaces

1) Comparisons With the State-of-the-Arts Methods: For
evaluation, we utilized the aligned faces pre-processed by the
provided alignment tool! and leveraged the five-fold cross
validation on these face data. We created a deep learning
based approach with the VGG Face Net [64] and the soft-
max classification loss function as the baseline. By carefully
following the evaluation protocol employed in [32], we used
the classification accuracy and 1-off accuracy which means
the predicted label is within the neighbouring groups of the
true one for comparisons. It is worthwhile to note that we
trained our LSDML by the AdienceFaces [48] training set,
while for our M-LSDML we leveraged the unconstrained age
grouping datasets including the AdienceFaces [48] training set,
MORPH [46] and the Chalearn [49] training and validation
sets (we grouped face samples in Chalearn [49] the same
procedure as [31]). Table VII tabulates the results of our
methods compared with [32] on the AdienceFaces [32] dataset.
According to the results, we observe that the proposed methods
obtains better performance than Cascaded-CNN [32] espe-

1 http://www.openu.ac.il/home/hassner/Adience/code.html#inplanealign

TABLE VII

COMPARISONS OF MAEs OF OUR APPROACH WITH THE
STATE-OF-THE-ART METHODS ON THE ADIENCEFACES [48]
DATASET THAT WERE CAPTURED IN THE WILD CONDITIONS.
NOTE THAT 1-OFF ACCURACY MEANS THE PREDICTED LABEL
Is TRUE WITHIN THE NEAREST-NEIGHBOUR GROUPS
FOR COMPARISONS, TYPICALLY

Methods Exact 1-off
Best from [48] 45.14£2.6 79.5£1.4
Best from [29] 50.7+5.1 84.7+2.2
Cascaded-CNN [32] 529+ 6 88.5 +2.2
VGG Face Net [64] + softmax | 54.84+10.2 | 89.3+6.5
LSDML 56.9+6.0 91.84+3.1
M-LSDML 60.24+5.3 93.74+2.3

cially on the 1-off accuracy. Hence, with the proposed label-
sensitive metric and deep architecture, our models achieve
the promising results on this dataset where the face samples
undergo large variances of poses, lightness and cluttered
backgrounds.

2) Performance Effects of Different Data Augmentation
Strategies: To evaluate the effectiveness of our proposed
M-LSDML in comparisons to conventional data augmentation
methods, we conducted experiments of our methods compared
with the horizontal flipping and random cropping. Specifically,
the horizontal flipping mirrors the face samples based on the
horizontal axis, while the random cropping randomly crops
images from the original input by the specified translations
during training (centering cropping during testing), respec-
tively. Table VIII shows the results of our models compared
with the horizontal flipping and random cropping on the
AdienceFaces [48] dataset. From these results, we have made
three-fold conclusions as follows:

1) By comparing our LSDML which utilizes data aug-
mentation techniques with the proposed M-LSDML,
we observe that our M-LSDML significantly outper-
forms the baselines with data augmentation methods such
as horizontal flipping and random cropping by about
3% accuracy. Hence, the results demonstrate that our
M-LSDML consider large variances due to the cross-
population face aging datasets.

2) The reporting results indicates that our M-LSDML signif-
icantly outperforms LSDML with multiple external facial
age estimation datasets, which shows the effectiveness of
the employed label correlation framework in M-LSDML.
In addition, LSDML learned by external data exhibits
the comparable performance with LSDML with data
augmentation strategies including random cropping and
horizontal flipping. This is because LSDML by simply
combining datasets ignored to maximize the correlation
for cross-population datasets, leading to scarce improve-
ments for LSDML even with multi-source face aging
data.

3) By comparing our model regarding with versus with-
out any data augmentation methods like horizontal flip-
ping and random cropping, we see that these data
augmentation-based techniques slightly improve the per-
formance for both our LSDML and M-LSDML.
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TABLE VIII

COMPARISON OF CLASSIFICATION ACCURACY OF OUR M-LSDML WITH DIFFERENT DATA AUGMENTATION METHODS ON THE ADIENCEFACES [48]
DATASET. NOTE THAT N-OFF MEANS THE PREDICTED LABEL IS TRUE WITHIN THE N-NEIGHBOUR GROUPS FOR COMPARISONS,
TYPICALLY, THE VALUES OF N WERE SPECIFIED TO 1 AND 2

[ Methods | Augmentation Strategy | Exact | T-off [ 2-off [ Training Dataset ]

LSDML w/o data augmentation 56.0£8.2 | 91.7+£2.7 | 97.3£0.9 D1

LSDML w/o data augmentation 56.846.9 | 90.3+1.5 | 98.0+1.4 D1,Ds2, D3

LSDML random cropping + horizontal flipping | 56.9£6.0 | 91.843.1 | 97.9+0.9 D,

LSDML random cropping + horizontal flipping | 57.3+£7.2 | 92.44+4.0 | 97.6%1.1 D1,Ds, D3
M-LSDML w/o data augmentation 58.24+7.5 | 93.3+2.9 | 98.6+1.3 D1,D2, D3
M-LSDML horizontal flipping 59.1+£8.1 94.4+3.2 98.8+1.3 D1,Ds, D3
M-LSDML random cropping 59.9+£7.5 | 94.8+1.9 | 99.1+1.2 D1,Ds, D3
M-LSDML | random cropping + horizontal flipping | 60.24+5.3 | 93.7+2.3 | 98.2+0.7 D1,D3, D3

D1 -AdienceFaces [46] training set, D2-MORPH [46],

TABLE IX

COMPARISON OF MAEs OF OUR APPROACH COMPARED WITH
STATE-OF-THE-ART APPROACHES ON THE FG-NET DATASET

[ Methods [ MAE | Year |
BIF+KNN 8.24 B
RUN2 [69] 5.78 | 2007
AGES [1] 6.77 | 2007
LARR [26] 5.07 | 2008
PFA [70] 497 | 2008
MTWGP [23] 4.83 | 2010
RED-SVM [71] 521 | 2010
Raw+OHRANK [9] | 6.25 | 2011
LBP+OHRANK [9] | 4.92 | 2011
BIF+OHRANK [9] | 4.48 | 2011
mKNN [72] 521 | 2012
LDL [12] 5.77 | 2013
CPNN [12] 476 | 2013
CA-SVR [56] 467 | 2013
CS-OHR [59] 470 | 2015
CS-LBFL [15] 443 | 2015
CS-LBMFL [15] 436 | 2015
LSDML 3.92 -
M-LSDML 3.74 -
Cascaded-CNNT [32] | 3.49 | 2016
LSDML' 3.53 -
M-LSDML' 3.31 -

'i' By following the settings in [32], we randomly split the FG-NET [22] dataset
into two folds: one fold consists of 890 samples for training and the remaining
112 samples were used for testing.

G. Evaluation on FG-NET

We evaluated our approach on the FG-NET dataset, which
undergoes two challenges: 1) face samples encounter large
aspect ratios and cluttered background, 2) there exits lim-
ited labeled training samples. Due to the limited samples
for each subjected person, we adopted the leave-one-person-
out (LOPO) strategy to conduct age estimation experiments.
Specifically, we used all face images of one person as the test
set and the remaining were used for training. We averaged the
82 folds results as the final age estimation performance. Since
the 82-fold deeply training in ResNet-101 is time-consuming
and easily leads to overfitting, in our experiments, we froze
the previous convolution layers and only fine-tuned the last
convolutional layer by feeding the provided face samples to

D3-Chalearn [49]
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Fig. 6. The CS curves of our approach compared with different facial age
estimation methods on the FG-NET dataset.

the network during training process. Note that we set the value
0.0001 to the learning rate to fast convergence. We compared
our LSDML trained by the training samples from FG-NET
with the state-of-the-art facial age estimation evaluated in the
FG-NET dataset in Table IX and Fig. 6. The demonstrated
results show the effectiveness of our proposed LSDML, where
the complementary information of both tasks of label-sensitive
metric learning and hard example mining is exploited to
make the learned metric more robust. We also evaluated the
proposed M-LSDML on this dataset. Specifically, we chose
the face samples for each person as the testing set and
utilized the remaining FG-NET face samples by combining the
union of the MORPH (Album?2), Chalearn, FACES datasets
as the training set. Hence, the whole procedures also per-
formed 82 folds and we averaged these results as the final
performance. From these results, we see that the proposed
M-LSDML improves the facial age estimation performance
thanks to the full use of the correlation of multi-source
face aging datasets, which achieves the more discriminative
capacity for the learned feature similarity.

We also compared our methods with the facial age esti-
mation method which was recently proposed in [32]. For
fair comparisons with [32], we employed the 890-train and
112-test evaluation protocol by following the setting in [32].
We repeated the procedure for ten times and averaged the
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TABLE X
COMPARISON OF MAEs OF OUR APPROACH WITH DIFFERENT STATE-OF-THE-ART APPROACHES ON THE FACES DATASET

[ Methods [ Neutral Happy Disgust Fearful Sad  Angry [ Year |
BIF+OHRANK [9] 5.16 7.64 8.31 7.00 6.87 7.87 2011
LBP+OHRANK [9] 6.36 8.88 9.20 7.30 9.09 8.86 2011

BIF [73] 9.50 10.70 13.26 12.65 10.78 13.26 2012
BIF+MFA [73] 8.14 10.32 12.24 10.73 10.66 10.96 2012
CS-LBFL [15] 5.06 6.53 7.15 6.32 6.27 6.94 2015

CS-LBMFL [15] 4.84 5.85 5.70 6.10 4.98 5.50 2015

DeepRank [33] 5.99 7.12 8.15 6.35 7.77 6.68 2015

DeepRanker+ [33] 5.86 7.87 7.80 6.66 7.49 6.59 2015
LSDML 3.88 3.49 4.41 5.10 4.09 3.87 -
M-LSDML 3.83 3.11 4.16 5.01 3.67 3.16 -

90

80

70

60

o
o
O
® 50
(]
2
40
3 0
5
o 30 - CS-LBMFL
=8 CS-LBFL
20 == BP+OHRANK |
BIF+OHRANK
10 -®-1.SDML
== M-LSDML
0 | | n
0 2 4 6 8 10

Error Level

Fig. 7. The CS curves of our approach compared with different facial age
estimation methods for Happy Expression on the FACES dataset.

results for final performance. Note that we trained our
M-LSDML by utilizing the face aging datasets including
FG-NET [22] training set (as noted 890 face samples),
MORPH (Album?2) [46], ChalLearn [49] and FACES [47]
which were employed to predict the exact age values. Accord-
ing to these results, we observe that our methods outperforms
Cascaded-CNN [32]. The achievements benefit from both the
developed hard-mining strategy to discover the hard examples
via the deep residual networks, which exploits the complex
relationship of face images and age labels. However, one
thing should be noted that evaluation on the FG-NET [22]
by employing the LOPO protocol clarifies the experimental
conclusions rather than an empirical performance evaluation,
which has also been discussed in [32].

H. Evaluation on FACES

To demonstrate the advantages of our proposed approach,
we evaluated our approach on the face aging dataset FACES
which is exposed to diverse facial expressions. For fair
comparisons, we conducted the experiments under the same
expression. Note that our LSDML was trained by the training
set from FACES, while our M-LSDML was learned by the
MORPH, FG-NET datasets along with the training samples
FACES. Fig. 7 shows the CS curves of our approach compared
with different facial age estimation methods, and Table X
tabulates the MAESs, respectively. According to these results,

we see that our LSDML largely improves the facial age
estimation performance compared with the state-of-the-arts,
which shows the discriminativeness of the learned deep fea-
ture embedding based on the proposed label-sensitive and
hard example mining strategies even in such cases that the
face images undergo diverse changes of facial expressions.
Moreover, our M-LSDML efficiently improves the perfor-
mance thanks to more discriminative information exploited
in M-LSDML from different face aging datasets, so that the
learned feature similarity achieves robustness to diverse facial
expressions.

1. Evaluation on ChaLearn

Lastly, we evaluated our LSDML on the apparent age
estimation challenge dataset [49]. Since the ground-truth age
labels of testing datasets are not available, we performed
age estimation by utilizing the validation set for testing.
Note that each face in the dataset was annotated by the mean
apparent age and the standard deviation. We also introduced
the Gaussian error [49] to conduct experiments on the apparent
facial age estimation dataset for the evaluation protocol. The
Gaussian error is computed by the following formula:

(55
g=1—exp| ————

202

where ¢ is the predicted age value, m is labeled mean age
apparent age and o is the ground-truth standard deviation.

In this experiment, we trained our LSDML by leverag-
ing the training set from the Chalearn dataset. We created
KNN with the BIF feature as the baseline method. We also
compared our LSDML with OHRANK +BIF and CS-LBFL.
Accordingly, OHRANK utilizes hand-crafted feature BIF, and
CS-LBFL automatically learns linear feature filters directly
from image pixels. Table XI tabulates the MAEs and Gaussian
errors [49], and Fig. 8 shows the CS curves of our approach
compared with the state-of-the-arts, respectively. Compared
with existing feature learning methods, we see that our
LSDML achieves very competitive performance, which shows
the discriminativeness of the learned feature similarity and
robustness to large variations of varying facial expressions,
diverse aspect ratios, partial occlusions and cluttered back-
ground. It is valuable to see that VGG (softmax, Exp) improves
the performance by utilizing additional extremal face data

Y
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TABLE XI
COMPARISONS OF GAUSSIAN ERRORS OF OUR APPROACH WITH STATE-OF-THE-ARTS ON THE CHALEARN [49] VALIDATION SET

[ Method [ Model Description | Gaussian Error | External Datasets |
BIF [11] BIF [11] + KNN 0.89 -
BIF [11] BIF [11] + OHRANK [9] 0.55 -
VGG (softmax, Exp) [74] Deep Expectation 0.51 -
VGG (softmax, Exp) [74] Deep Expectation 0.28 Dg
VGG (softmax, Exp) [75] with pretrained VGG-16 Face Net [64] 0.28 Dg
CS-LBFL [15] Cost-Sensitive Local Binary Feature Learning 0.45 -

Best from DCNN [31] deep convolutional neural networks 0.359 D1, Ds, D3
Cascaded-CNN [32] with error correction 0.355 D3, Dy,Ds
Cascaded-CNN [32] with end-to-end finetuning 0.312 Ds, D4,Ds
Cascaded-CNN [32] with end-to-end finetuning and error correction 0.297 D3, Dy,Ds

LSDML with OHRANK [9] 0.37 -
M-LSDML with OHRANK [9] 0.34 Do2,Ds
LSDML with end-to-end finetuning [19] 0.328 -
M-LSDML with end-to-end finetuning [19] 0.315 Ds,Ds

D, -CASIA-WebFace [76],
D 4-Images of Groups [77],

D,-MORPH [46],
Ds-FG-NET [22],

D3-AdienceFaces [46]
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Fig. 8. The CS curves of our approach compared with different facial age
estimation methods on the Chal.earn dataset.

and pre-trained model such as VGG-16 face net. Lastly,
we compared our extension M-LSDML with LSDML and
the results show that M-LSDML consistently outperforms
LSDML, which demonstrates the effectiveness of utilizing
multi-source cross-population datasets and the complementary
correlation of different face aging datasets.

We also evaluated our proposed methods compared with
DCNN [31] and Cascaded-CNN [32] on the Chalearn [49]
validation set. Since the source codes were not released,
the results of the state-of-the-arts including [31] and [32]
were directly cropped from the original papers. As the results
are shown in Table XI, our methods outperform DCNN [31],
which is because our model achieves the aging order informa-
tion based on the proposed label-sensitive criterion. Moreover,
compared with Cascaded-CNN [32] without end-to-end fine-
tuning, our M-LSDML with OHRANK [9] obtains comparable
performance by only utilizing D,-MORPH [46] and D5-FG-
NET [22] that were captured in the controlled conditions.
Moreover, we have evaluated our method by introducing an
end-to-end technique. Specifically, we revised the proposed
loss function by including the ordinal regression [19] at the
top of the deep network, and then finetuned the network para-
meters. Having been integrated with an end-to-end finetuning

Dg-IMDB-WIKL (https://data.vision.ee.ethz.ch/cvl/rrothe/imdb- wiki/)

technique [19], the performance based our M-LSDML has
been improved by decreasing about 0.03 of Gaussian error,
which shows the very competitive results with the best perfor-
mance from Cascaded-CNN [32].

J. Discussion

The above experimental results suggest the following three
observations:

1) The deep feature representations learned by our LSDML
achieve better performance than those hand-crafted fea-
tures. The reason is that our LSDML automatically learn
age-adaptive and discriminative patterns directly from
raw pixels, which performs strong robustness to diverse
facial expressions, aspect ratios and cluttered background.
Moreover, our model achieves the nonlinear relationship
between face samples and exploits the label correlation
for age classes in the learned feature similarity. Hence,
better age estimation performance is obtained.

2) Our LSDML achieves better performance in comparisons
to the deep metric learning methods which utilize random
sampling method. The reason is two-fold: 1) our model
aims to seek the feature similarity of face pairs with dif-
ferent age value gaps, which exploits the label correlation
in the learned metric space, and 2) we learn to mine
hard examples to preserve the local manifold structure
of face samples in the newly learned subspace. In terms
of the computational efficiency, our method exhibits fast
convergence.

3) M-LSDML outperforms LSDML, which is because
our M-LSDML aims to maximize the correlation for
cross-population facial age datasets, which enhances
the cross-population targets for training. As a result,
the multi-source datasets reinforce to learn a more robust
and discriminative feature similarity.

V. CONCLUSIONS AND FUTURE WORK

In this work, we have proposed a label-sensitive deep metric
learning (LSDML) method for facial age estimation. Unlike
existing hand-crafted features which require expert knowledge
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by hand and the kernel-based metric learning methods which
encounter the scalability problem, our LSDML leverages deep
residual network to learn a series of nonlinear feature trans-
formations, where the feature similarity is smoothly sensitive
to the degree of age difference. To make the learned feature
similarity more robust, we have proposed a hard example
sampling method, which learns to select meaningful hard
samples during the optimization process. Moreover, we have
extended our proposed LSDML to M-LSDML by maximiz-
ing the correlation of cross-population multi-source datasets,
so that the learned metric is more discriminative and robust.
Experimental results on four benchmarking datasets show the
effectiveness of our proposed approach. It is desirable to
address facial age estimation with feed-back deep architectures
for personalized face aging and jointly optimize the procedures
of extracting age-related feature representation and predicting
age in an end-to-end manner are are future works.
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