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Person re-identification aims at matching individuals across multiple non-overlapping adjacent cameras.
By condensing multiple gallery images of a person as a whole, we propose a novel method named Set-
Label Model (SLM) to improve the performance of person re-identification under the multi-shot setting.
Moreover, we utilize mutual-information to measure the relevance between query image and gallery
sets. To decrease the computational complexity, we apply a Naive-Bayes Nearest-Neighbor algorithm to
approximate the mutual-information value. To overcome the limitations of traditional linear metric
learning, we further develop a deep non-linear metric learning (DeepML) approach based on Neighbor-
hood Component Analysis and Deep Belief Network. To evaluate the effectiveness of our proposed
approaches, SLM and DeepML, we have carried out extensive experiments on two challenging datasets i-
LIDS and ETHZ. The experimental results demonstrate that the proposed methods can obtain better
performances compared with the state-of-the-art methods.

Neighborhood component analysis

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In the recent years, the task of person re-identification (Re-Id)
is becoming largely attractive in video surveillance. It aims to
match people across multiple non-overlapping cameras, for exam-
ple, identify people across multi-view cameras in the multi-
camera network, or recognize the identical person who disap-
peared in one camera and appeared in another camera later. It also
can be embedded in widespread applications such as tracking and
target re-acquisition.

According to the experimental setting, the methods of Re-Id
can be divided into two groups, single-shot and multi-shot. The
former group selects only one image for each person, while the
latter group describes multiple images as a signature for each
person Id(class label). Re-Id is a challenging problem, since it
suffers illumination changes, low-resolution, and view variations
in multiple cameras. For recent best efforts from researchers, one
kind of the Re-Id methods focuses on designing discriminative
features [1-7]. By utilizing the supervised information, the other
kind of methods aims at finding a global linear transformation to
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re-weight feature dimensions (e.g. learning a Mahalanobis dis-
tance) [8-11].

In this paper, we first propose a Set-Label Model named SLM
approach to improve the performance of person re-identification
under the multi-shot setting. There are three steps for SLM. Firstly,
we define a set-based structure for each class, which contains
concatenated features between the query feature and the gallery
features. In the following, we use SET to replace the set-based
structure for simplicity. We utilize mutual-information to measure
the relationship between features w.r.t their class label. Secondly,
since the features distribution of conditional probability can be
hardly assumed, we apply a Naive-Bayes Nearest-Neighbor algo-
rithm (NBNN) [12] to approximate the mutual-information value
instead of directly accessing the probability form. In addition, the
NBNN algorithm can also provide a significant efficiency. Finally,
the mutual-information values can be ranked in a descending
order and the corresponding class label of the highest value is
assigned to the query.

By utilizing the labeled data, we further develop a deep non-
linear metric learning method named DeepML based on Neighbor-
hood Component Analysis (NCA) [13] and Deep Belief Network
(DBN) [14]. NCA aims to maximize the expected numbers of
classified sample in training data via a data transformation. By
NCA, an improvement can be performed on the algorithms, which
are based on computing the distance of two features (such as k-
nearest-neighbor classification). To extend the data transformation
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in NCA, we utilize DBN to learn a nonlinear feature transformation.
NCA is placed on the top layer of RBM to adjust the weights of top
layer. Then fine-tuning is carried out to adjust the weights of other
layers. By this way, the discriminative power of features can be
enhanced by the learned new metric (transformation).

There are two main contributions for this paper. (1) We model
the relevance among multiple image features by mutual-infor-
mation. Furthermore, we apply an approximate algorithm NBNN
to value the mutual-information instead of directly accessing the
probability form. As our knowledge, it is the first time that mutual-
information theory is applied in the task of person re-identi-
fication. (2) By considering the labeled images, we develop a deep
non-linear metric learning method to improve the discriminative
power of our features. As most metric learning methods focus on
learning a linear transformation, we apply deep learning archi-
tecture to provide a non-linear mapping from the origin features
to new non-linear features.

We evaluate SLM and DeepML on two benchmark datasets i-
LIDS and ETHZ, both of which have multiple images per person
and are undergoing the changes of illumination, view angle, low-
resolution and occlusion. The experimental results demonstrate
that SLM can obtain 100 percent matching accuracy with simple
color features (HSV) on ETHZ after rank 3, and DeepML can gain
additional improvements by combining SLM with deep non-linear
metric learning.

The remainder of this paper is organized as follows: related
works are introduced in Section 2. The details of SLM and DeepML
are described in Section 3. The experimental performance and
results are presented in Section 4. Finally, we draw some conclu-
sions and put forward future works in Section 5.

2. Related work

Recently, the task of person re-identification, aiming at match-
ing the same individual across multiple disjoint cameras, has
obtained increasing attention in video surveillance. To improve
the performance of Re-Id, existing works mainly focus on two
aspects, appearance feature extraction and distance metric
learning.

The appearance based methods mainly rely on designing
descriptive features such as low-dimensional discriminative fea-
tures [1], viewpoint invariance features [2,15], accumulation of
multiple features [3], combination of both local and global features
[4], bio-inspired features [5,7], discriminative features by attri-
butes [6] and Fisher vector encoded features [7].

Different from the appearance based methods, other methods
in person re-identification care more about how to use the metric
learning method to improve the measure of the features [8-
11,16,17]. By a feature mapping, these methods project the original
features into another feature space. The traditional metric learning
approaches such as [16,17] aim to learn an optimal transformation
to weight the features. By this transformation, the true matches
are clustered closer, and the false matches are pushed farther. In
this way, a budget of metric learning based methods specific for
Re-Id has been proposed. Ref. [8] develops a fast and scalable
method of learning metric by inference of likelihood ratio test. Ref.
[11] formulates Re-Id as a distance comparison learning problem
by maximizing the probability between a true match and a false
match. Most of these methods are limited to learn just a linear
transformation to provide a projection from the source feature
space onto the target space.

According to the ways of verifications, Re-Id can be grouped
into two categories: single-shot and multi-shot. Generally, to
validate the effectiveness of a Re-Id approach, we should randomly
choose the same number of images (candidates) from each person

first, and then group these candidates with their labels as a gallery
set. In the single-shot setting, there is only one image for each
person in the gallery set [1,2]. Since single image of the target can
hardly cover the changes of multi-pose, multi-camera and illumi-
nation, the traditional approaches have obtained few improve-
ments under the single-shot setting.

Different with the single-shot, the multi-shot setting chooses
two or more images to model a person [3-5,7]. In the multi-shot
case, the query image matches with the different signatures
(a signature represents a person with multiple images) and then
the label of the query image is assigned to the signature, which has
the smallest distance with the query image. The multi-shot setting
provides more information and probability matching clues to
classify the query image.

The proposed method is different from the previous works in
three aspects. First, unlike the feature designing in the appearance
based methods, SLM designs a framework. Under this framework,
the features are fed into a features-class (Set-Label) structure,
which can deeply discover the information from multiple features
in the multi-shot setting. Second, different from the linear projec-
tion in the traditional metric learning methods, DeepML learns a
non-linear transformation by a deep network, which can enhance
the discriminative power of features. Finally, SLM and DeepML are
combined into a single pipeline via the similarity measurement.

3. The proposed method

In this section, we introduce our proposed person Re-Id
method. Our method consists of two parts: SLM and DeepML. In
Section 3.1, the feature modeling approach SLM is introduced.
Specifically, we construct SET between query feature and gallery
set, and utilize mutual-information to measure relationship
between features and their labels. In Section 3.2, we provide a
nearest neighborhood based algorithm [12] to estimate the mutual
information value. In Section 3.3, to enhance the discriminative
power of the pairwise features in SLM, we further develop a non-
linear metric learning approach named DeepML based on NCA and
DBN. More details are given below.

3.1. Set-class model

The target of Re-Id is to predict the person Id (class label) of the
given query image. Focusing on the multi-shot setting, we model
multiple images as a representative signature, and propose SLM.
The overview of SLM is shown in Fig. 1.

Following [18], we concatenate the query feature x4 and the
feature xj into the pairwise feature xg; where xf{ is the feature of
j-th image with label c in the gallery set, j is in the range of [1, N(],
N¢ is the number of images with label c in the gallery set. For
simplicity in this paper, N, is set to the constant N for all the labels.
Then, features Xg; constitute a SET Sg, x§; € Sq. Fig. 2 demonstrates
how these sets are formed.

To model the relationships between SETs and class labels, we
propose a novel method based on the mutual-information theory.
Mutual-information can measure the relevance between two
random variation and has gained better results in many computer
vision tasks, such as action detection [19]. In the task of person Re-
Id, if the mutual-information value between the person feature
and the class label is maximal, we can consider that the image has
a higher probability to belong to this class(person). Thus, we re-
formulate the person Re-Id problem as follows:

¢ = arg max MI(SE;C:C) 1
ce{l1,2,...|Cl}

where Mi(e) denotes the mutual-information between SET and
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Fig. 1. The flowchart of SLM. (The strips combined with red and blue within one
SET are pairwise features and MI represents the mutual-information between the
SET and the class.) (For interpretation of the references to color in this figure
caption, the reader is referred to the web version of this paper.)

__________ setB S° ]
" class B b Km
i
1 | .\‘q
:!!!: -1 L
|
I !—’ |{f'
: class A A S i
1 T N I tq
| | : f - I\ X{:z
- ! i x3
qUeRY. class C \ T 1 E \.'q" =
: : f L I\ I‘A
1 4,
| S Rl
\ \ X3 )
\ ’/
gallery setc s¢ |

Fig. 2. The schematic diagram of SET construction: given a query image, it should
be paired with all images in gallery to form a structure defined SET for each class.

class label, Sg denotes the SET for class label C (c is the specific
value of C) and |C| is the number of classes.

Assuming that the pair-wise features within one SET are i.i.d.
(independently and identically distribute), we can define the
mutual-information formulation in the following probability form:

p(xfu., C= c>

MI(S;;C:C) =3y logm

T
XG €Sy

@)

where pgxf”,c =) donates the joint distribution of the pairwise
feature x;; and class label C=c, while p(x&) and p(C =c) are the
factored distribution.

Based on Eq. (2), we can obtain a further derivation:

p(x%,C:c) _p(xfy.|C:c>
p(x)pC=0)  p(x)

target set non-target set

Fig. 3. The demonstration of constructing target set and non-target set.

3 p(xfy|C=c>
- PxGIC=0)- p(C=0)+Pp(xgIC #c) - p(C#0)
1
= 3)
POGIC#0)
p(C= C)er -p(C#0)

In Eq. (3), p(C=c¢) and p(C #c) can be directly considered as a
known prior. Finally, if we can get the likelihood ratio item
pxg;|1C # 0)/p(xg|IC =), MI (SC; C= 3 can be computed easily.

3.2. The approximation of the likelihood ratio

The likelihood ratio item has suffered the difficulties of direct
accessing probability densities. To overcome this difficulty, we use
an efficient algorithm to approximate the ratio value. Specially, we
calculate the likelihood ratio by using NBNN [12].

NBNN holds a very simple form log p(x5;|C) cc —||xg;—X{u| \2 to
approximate the Gaussian kernel without dependence on the
variance, where xf is the nearest neighbor of Xgj in class c. We
construct a target set (c*) and non-target set (¢~ ) based on the
samples in the gallery set (Fig. 3). The target set consists of the
positive pairwise features, while the non-target set consists of
negative pairwise features of the dataset. As demonstrated in
Fig. 3, the positive pairwise features for class c are the combina-
tions of two arbitrary features within class c. On the contrary, the
negative pairwise features for class c are the combinations of two
features which do not belong to class c. The likelihood ratio item
can be estimated as

(XC|C?£C) B e e 27 C it 2

P20 el sl @
where x5y and x{j}, are the nearest neighbors of x¢. in the non-
target ¢~ and target set c*, respectively. Generally speaking, one
of the drawbacks in the task of person re-identification is that
there is no enough positive samples for training. By the combina-
tions of two features, the number of positive samples is increased
greatly and the information in the gallery set can be used
completely. For example, the number of positive samples for class
cis C§ and N for our pairwise features and traditional features,
respectively. N is the number of images with label ¢ in the
gallery set.
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Based on (Egs. (3) and 4), the mutual-information in Eq. (2) can
be computed in another form by

IC]

MI(S;C=c) ~ Ylo . 5
( ) z Flrexp %) (CI-1) ©
where w(xg;) denotes |\xfli—xCNﬁ||2—||xf”—xm||2, P(C=c) and

P(C #c) are set to 1/|C| and (1-—1/|C]), respectively, and |C| is
the number of classes.

After constructing the SETs, the query features can be utilized
for classification, because each query pair Xgj within one SET can
provide a positive or a negative vote for class c. From Eq. (5), if the
mutual-information score is positive, it is indicated that SET sz
votes a positive score for class ¢, and the query image is considered
to belong to class ¢ with a high probability. Otherwise, when the
mutual-information is negative, the query image seems not
belonging to class c. Finally, we make a decision by ranking all of
the mutual-information scores. The query is classified to the class
¢, which obtains the highest score.

3.3. Deep metric learning

SLM does not consider the discriminative information of the
gallery samples and can be seen as an unsupervised method.
Generally speaking, supervised methods such as metric learning
can improve the performances by using the discriminative infor-
mation. In the following part, we introduce how to enhance the
discriminative power of the SLM pairwise features by metric
learning.

In Eq. (4), both ||XZ}~—XCNN||2 and ||va—xc,\,§||2 can be calculated
by a distance metric. The distance metric utilized in SLM is
Euclidean distance. There are many metric learning methods,
which use a linear transformation (mapping) to project the
features into a new subspace. But in the scenario of Re-Id, the
appearance of persons can change violently for the large illumina-
tion changes, versatile view angles and intricate background noise.
These changes cannot be well modeled by a linear transformation.
We use a non-linear transformation, not the linear projection, to
improve the distance metric. Specially, we address the metric
learning problem by combining DBN and NCA. Through DBN, we
can learn a non-linear feature representation, which has more
powerful representation ability (as shown in many computer
vision tasks [20-26]). Through NCA, the features sharing the same
label can be closer and more discriminative than other neighbors.
The flow chart of DeepML is illustrated in Fig. 4. To build the neural
network, we use unsupervised training data to pre-train RBMs and
stack the RBMs layer by layer into a DBN architecture according to
[14]. After accomplishing the construction of the DBN network, we
solve NCA by fine-tuning the parameters of deep neural network,
and learn a non-linear distance metric.

Given the labeled training features {(x., c;)}, where xg; is the
pairwise feature of training sample g, ¢4 is the label of this sample,
which is in the range of {1,2,...,C}. C is the number of classes. In
the following, we use x, to replace xg; for simplicity. Then the
DeepML objective function can be written as follows:

N
@DeepML: 2 Z p(Xa,Xb) (6)

a=1Xp:Ca=Cp

exp(—dw(Xa, Xp))
2+ a€XP(—dw(Xa, Xz))

P(Xa,Xp) = (7)

A (Xa, Xp) = |[f Xl W) —F (x5 W) |? 8)

where X4, X, and X, are training pairwise features, x;, : ¢, = ¢}, is the
sample which has the same label with x,, x, is the neighbor of x,.
D(Xq,Xp) is the likelihood of two pairwise features. dw (x4, Xp) is the
non-linear distance metric under the DBN network W, where

\ \
| DBN 1 [ DBN
! 1 | 1
I 1 ! 1
v 3000 | 3000 )54
| 1 | 1
I 1 ! 1
v %0 ] , 500 "
I 1 ! 1
| 1 | 1
\ 500 I \ 500 ]

N\ /7 \ 7

_____ e ——

pairwise features | I pairwise features

Fig. 4. The flow chart of DeepML.

W =W p® w? p®  we-b pr=Dy Wb denotes the
weight associated with the connection between layer [ and layer
141, b? is the bias associated in layer [+ 1. f(x|W) is the non-linear
feature transformation parameterized by W, which can be
obtained by the following:

zZD =x
72 :f(W(l)X+b(1))
73 :f(W(z)Z(Z) +b(2))

FxIW) =z = fWn=Dz=1 1 p=D)

where f(-) can be chosen from sigmoid function, tangent function
and so on. In our approach, we utilize sigmoid activation function.

The DeepML objective function can be optimized by the back
propagation algorithm. Fine-tuning is carried out to adjust the
weights of the whole DBN network [27-29]. We obtain the
derivation of the learning objective function w.r.t parameter W
(Eq. (9)):

a@DeepML _ a@DeepML 0f(X|W)

oW T of W) oW ©)

where 0Opeepmr/df (X|W) can be calculated by gradient descending
algorithm [17]:

a@Dee‘pML .
—_— =2 Xq, X)) diff(xq, x
F xalW) x,:qzi c,,p( a0, Xp) diff (xq, X))

-2 Y PXa,Xp) diff(xq, xp)

Xp:Ca = Cp

+2 ) p(xa,xb){ > P(Xa.X) diff (x4, X2)
z7a

Xp:Ca = Cp

X| #Xa | q:cp =Cq

-2 % { ) p(xl,xq)}p(xa,xl) diff(xq, x;)

diff (xq, Xp) = f(xa| W) —f (X, |W) (10

where of(x|W)/oW can be calculated by the standard back-
propagation [29]. Through fine-tuning the weights of DBN, NCA
and DBN are combined together to obtain a non-linear distance
metric learning method. The procedure of the Fine-Tuning algo-
rithm of DeepML is shown in Table 1.
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Table 1
The Fine-Tuning algorithm of DeepML.

Input

(Xi,¢i),ie{1,2,...,N}: the training samples; N: the number of training samples; f(e|W) the pre-trained DBN architecture.

Algorithm
for i=1:N do gradient descending

9O peepuL
o xiW)

2. Calculate 7% using back-propagation

1. Calculate

according to Eq. (10)

3. Obtain the derivation of the learning objective according to Eq. (9)

4. Update W using gradient descend
end

Output
f(e|W)g; the fine-tuning DeepML network architecture

Fig. 5. Some images in the i-LIDS dataset. The images in the same column are belonging to the same person.

4. Experiments

In this section, to show the effectiveness, we test the proposed
method on two public datasets: i-LIDS and ETHZ. For evaluation,
we use the standard measurement named Cumulative Match
Characteristic (CMC) curve, where the vertical coordinate donates
the correct matching rates and the horizontal coordinate exploits
top ranking k. According to the CMC curve, we can figure out the
correct matches from the top suspected pedestrian images.

Dataset: In our validation, we use two standard datasets: i-LIDS and
ETHZ, which are both widely used in the task of person re-
identification. The i-LIDS dataset contains 476 images of 119 persons
in total. All the images are captured by the multiple non-overlapping
cameras at a busy airport. Each person has a set of averaging four
images under the different camera views. The dataset is undergoing
illumination changes, image blurring, low resolution, and occlusions.
Meanwhile, as to dataset ETHZ, it consists of 8555 images of 146
persons. The images in ETHZ are captured by a moving camera in the
busy streets. There are three video sequences including seq1l with
4857 images for 83 persons; seq2 with 35 persons in 1936 images;
seq3 with 28 persons in 1762 images. Compared with seq3, seq1 and
seq2 have suffered challenges incorporated in the large illumination
changes, versatile view angles and intricate background noise. Since
both of the dataset have more than two images per person, they can
be used under the multi-shot Re-Id setting. The samples of i-LIDS and
ETHZ are shown in Figs. 5 and 6, respectively.

Settings: In our experiments, we divide test images into two
sets: gallery set and probe set. N images for each person are
randomly selected to build gallery sets. Specially, for a person
which has M images, we randomly permutate the M images. Then
we choose the first N images to build the gallery sets. The

remaining images are used as probe set. In this way, the gallery
set has more than one images per person for multi-shot setting.
For the discriminative learning method DeepML, we divide the
images into two parts. One part is used for training and the other
part for testing. Duringthe training stage, the samples of the same
person are combined to form the positive pairs while the samples
of the different person are randomly combined to form the
negative pairs. In the testing phase, we apply DeepML on the
pairwise features and execute the whole test via SLM. To make the
comparison more fairly, we repeat the whole test procedure 10
times and average the recognition results as the final performance.
Features: For the features, we follow the feature extraction of
Zheng in [30]. First, since the image sizes are quite different for both
datasets, we normalize the images to the size of 128 x 64. Then,
each image is divided into six horizontal stripes. For each stripe, we
extract the features of the color histograms and texture information.
Finally, an image is represented by a 2784 dimensional vector.

4.1. SLM versus appearance based methods

4.1.1. SLM versus Baseline

Under the standard multi-shot setting, Re-Id methods compare
all possible pairs between the query feature and gallery features,
and select the one which obtained lowest distance as the convinced
signature [3]. Differently, we provide a framework for feature
combination before the feature matching step. To valid the effec-
tiveness of our framework SLM, we download Zheng's features from
the website http://www.eecs.qmul.ac.uk/~jason/ilids.html and test
them under the traditional multi-shot setting. In the following
parts, simply we name the way of the traditional multi-shot setting
as Baseline. We compare SLM with Baseline on both i-ILDS and
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Fig. 6. Some images in the ETHZ dataset. The images in the same column are belonging to the same person.
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Fig. 7. CMC performance on dataset i-LIDS compared to [3].

ETHZ. The results are shown in Figs. 7-10. From these figures, we
can know that on both the datasets, SLM can improve the
performances significatively. We attribute the improvements to
the proposed framework of SLM. Under the framework of SLM,
the different features are combined to form the positive and
negative samples. By this way, Re-Id can easily discover the
similarity and dissimilarity from features of pedestrians.

4.1.2. Performances on i-LIDS

For the dataset i-LIDS, we compare SLM with the popular method
SDALF [3]. Since the dataset has multiple images for each person, we
randomly choose two or three images belonging to each person to
build the gallery set. Then the positive and negative samples are
selected from the gallery set to form the pairwise training set. By the
training set, we compute the distances between the query feature and
training samples. The distances can be used to gain the final classifica-
tion results. Fig. 7 gives the final results. According to the CMC curve, it
is easy to see that SLM outperforms SDALF in an obvious way. In Fig. 7,
when N is changed from 2 to 3, the performance improvement of SLM
is much bigger than that of other methods. For example, the accuracies
of SLM, SDALF and Baseline are improved about 16%, 12% and 5% under
rank 5, respectively. Thus, when using more images in the gallery set,
we can obtain a further improvement in our experiment. It is obvious
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Fig. 8. CMC performance on the dataset ethz seq1 compared with the state-of-the-
art methods.
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Fig. 9. CMC performance on the dataset ethz seq2 compared with the state-of-the-
art methods.
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Fig. 10. CMC performance on the dataset ethz seq3 compared with the state-of-
the-art methods.

to figure out that more feature combinations can contribute to higher
accuracy on the Re-Id performance via our SLM framework.

4.1.3. Performances on ETHZ

For the dataset ETHZ, we compare SLM with the popular
method SDALF [3] and the other two state of the art methods
eBiCov [5] and eLDFV [7]. Different from the i-LIDS dataset, in the
ETHZ dataset, we randomly select more images from the gallery
set to build the training set. The results when N is set to {2,3,5,10}
are reported in Figs. 8-10 for each sequence. When setting N to 3,
SLM obtains better performance than the Baseline method. When
N is assigned to 5, the experimental results show that SLM can
obtain a big improvement. While N reaches 10, we perform the
highest performance compared with the state-of-the-art. Espe-
cially, our CMC curve is close to 100% after rank 3 with N=10. As to
seq3, we obtain a comparable performance with eLDFV, and better
performance than the other methods. As our known, eLDFV [7]
exhibits the best performance on ETHZ dataset in the literatures
because it utilizes the powerful Fisher vector representation.
Compared with eLDFV, SLM can get the better performances even
with the simple features (Zheng's features).

4.2. DeepML versus metric learning based methods

4.2.1. Parameters setting

In the following experiments, we test the effectiveness of our
DeepML integrated with SLM. N is set to 2 and 5 on i-LIDS and
ETHZ, respectively. datasetOne affected parameter in deep learn-
ing is the number of the layers during the pre-training phase [14].
Table 2 demonstrates that the results are influenced by the
number of layers in the deep architecture. In this experiment,
we give the results of two layers RBM. Each layer has 1000 nodes.
According to Table 2, two layers RBM obtains better performance
than single layer RBM. This falls in with the common sense in deep
leaning. But deeper the architecture is, more expensive it is in
computing. In the following experiments, we choose a four layers
RBM network [14]. The number of nodes of four layers are 500,
500, 3000, 30. The number of layers and nodes are chosen by the
experimental results. The DeepML feature is composed by con-
catenating the responses of all layers. And further more, we
concatenate the DeepML features with the original Zhang's fea-
ture. The combined feature is named as DeepML-hybrid.

Table 2
CMC performance of the pre-training phase on i-LIDS.

Layer Matching rates

R=1 R=2 R=3 R=4 R=5 R=6 R=7 R=8 R=9

1 359 497 578 627 664 699 733 757 779
2 41.5 513 581 645 693 723 754 773 801
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100
Q0
80 }+
70 +
B0 F
o
2
g 5
S
2 !
40
30 +
ITML
0 Eslicasbunidass it LMNN
— IDENTITY
L1 I A TR Rt S A S e St DeepML
0 i ' i i i 3 DeepML-Hybnid
0 5 10 15 20 25 30

Rank

Fig. 11. CMC performance on the dataset i-LIDS based on metric learning
approaches compared with the state-of-the-art methods.
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Fig. 12. CMC performance on the dataset ETHZ based on metric learning
approaches compared with the state-of-the-art methods.

4.2.2. Performances

We compare the effectiveness of DeepML with many traditional
metric learning methods, i.e. LMNN [17] and ITML [16]. The results
are demonstrated in Figs. 11 and 12, respectively. According to the
results, the improvements can be observed when the different
methods apply the metric learning in re-weighting the features.
From Fig. 11, we also can know that on the i-LIDS dataset, the
matching rate of DeepML at rank 10 is lower than traditional
metric learning methods. However, the combination feature
DeepML-hybrid can gain a big higher performance compared with
the deep features only. The same phenomenon can be observed in
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Table 3
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Matching performance in dataset i-LIDS: p is the number of persons used for testing (approach with = donates the multi-shot experimental performance).

Approaches p=30 p=50 p=80

r=1 r=>5 r=10 r=1 r=>5 r=10 r=1 r=5 r=10
RDC 44.05 72.74 84.69 37.83 63.70 75.09 32.60 54.55 65.89
Adaboost 35.58 66.43 79.88 29.62 55.15 68.14 22.79 44.41 57.16
LMNN 33.68 63.88 78.17 27.97 53.75 66.14 23.70 45.42 57.32
LMNN* 37.55 69.85 81.89 33.85 61.54 78.97 28.64 54.01 66.42
ITML 36.37 67.99 83.11 28.96 53.99 70.50 21.67 41.80 55.12
ITML* 37.72 68.87 85.09 31.28 63.85 81.54 23.46 48.33 64.63
MCC 40.24 73.64 85.87 31.28 59.30 75.62 12.00 33.66 47.96
Xing's 31.80 62.62 77.29 27.04 52.28 65.35 23.18 45.24 56.90
PLS 25.76 57.36 73.57 22.10 46.04 59.95 18.32 38.23 49.68
L1-norm 35.31 64.62 77.37 30.72 54.95 67.99 26.73 49.04 60.32
Bhat. 31.77 61.43 74.19 28.42 51.06 64.32 24.76 45.35 56.12
DeepML-Hybrid 53.95 84.34 97.63 42.99 73.30 88.14 37.69 66.81 7913

The best results are marked with bold.

Table 4
Matching performance in dataset ETHZ: p is the number of persons used for testing
(approach with s donates the multi-shot experimental performance).

Approaches p=40 p=120

r=1 r=>5 r=10 r=1 r=>5 r=10
RDC 72.65 90.08 95.59 61.58 79.70 86.65
Adaboost 69.21 87.76 93.54 60.73 78.82 85.66
LMNN 64.88 84.23 92.04 47.87 67.90 76.96
LMNN* 84.46 90.78 92.99 70.96 79.09 82.76
ITML 65.38 86.81 94.06 43.09 65.95 76.55
ITML* 86.79 91.49 93.49 72.35 80.20 84.03
MCC 71.92 90.96 95.96 31.08 59.40 73.19
Xing's 60.78 80.28 87.37 47.09 66.68 76.04
PLS 54.55 75.09 83.30 43.12 63.00 71.77
L1-norm 60.71 80.85 87.90 51.30 70.49 78.20
Bhat. 60.97 80.91 87.79 51.60 70.49 78.45
DeepML-Hybrid 85.13 92.68 95.09 80.63 87.04 89.89

The best results are marked with bold.

Fig. 12. The hybrid features outperform both LMNN and ITML.
These results show that the DeepML feature and the original
feature are mutually complementary. The combined features can
carry more information about the samples.

To supplement more comparison experiments, we have com-
pared our DeepML approach with the implemented results of the
state-of-the-art in [31] (Tables 3 and 4). l;-norm distance and
Bhattacharyya distance are two nonlearning distances, which are
commonly utilized in person Re-Identification method. Relative
Distance Comparison (RDC) is formulated in [31], the Adaboost
algorithm is proposed in [2] and the partial least squares (PLS)
approach is introduced in [1]. All these three methods are
learning-based person Re-Identification methods. Xing's method
[32], LMNN [17], ITML [16], and MCC [33] are four popular distance
metric learning methods.

In the both tables (Tables 3 and 4), p donates the number of
testing persons, which means that the remaining persons are used
in the training stage, r represents the top rank and the numbers
filled in the table are the recognition rates. Upon the results of the
i-LIDS dataset in Table 3, it is distinct to discover that our deep
learning method has gained the highest performance over other
metric learning methods. At the same time, according to Table 4,
when p is assigned to 40, we have obtained a comparable results.
Moreover, when we set p to 120, which means only a small
fraction of images is put into training, the proposed method even
makes the better results than other methods.

From the above results based on metric learning approaches,
we can figure out three aspects of our conclusions. First, our non-
linear deep metric learning method has gained significant
improvements when combining the deep features and the original
ones. Second, integrated with the SLM, DeepML can work well for
the task of person Re-Id by using only small scale of training
samples. Finally, the multi-shot outperforms the single-shot while
using the traditional metric learning methods such as LMNN and
ITML, because the multi-shot setting utilizes more information to
obtain more stable features against vibrations.

4.3. Computational efficiency analysis

In our method, the number of positive samples for class c is CZ,
where N is the number of randomly selected images for each
person to build gallery sets. The number of negative samples for
class ¢ is C(ZC_I)N, where C is the number of persons. The
computational efficiency of Eq. (4) is O(C?N?). N is usually less
than 5 in our method. So the computational efficiency of our
method is most influenced by the amount of persons.

5. Conclusion and future work

In this paper, we re-formulate Re-Id as a set-based classification
problem from the perspective of information theory. Specifically,
we define the set-based structure between the query image and
the gallery images, and signify the relationship between the set
and the class label by mutual-information. Further, we propose a
non-linear metric learning method (DeepML), which is based on
NCA and DBM. The proposed DeepML can both introduce the
supervised information into SLM, and improve the generalization
ability of SLM. The experimental results on the popular datasets
demonstrate the effectiveness of our proposed methods.

As a matter of fact, our approaches encounter high computational
cost problem since we have to compute all positive and negative
pairwise neighbors for each class. In the future, we will optimize the
algorithm and extend our method with a speed-up algorithm.
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