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ABSTRACT

In this paper, we propose to learn a neighborhood-reasoning
label distribution (NRLD) for facial age estimation. Unlike
conventional label distribution methods with fixed-structural
aging patterns, in this work, our NRLD aims to reason about
more resilient and adaptive label distribution by disentan-
gling the graph of face neighbors. In particular, our model
holds the assumption on that the sample-specific age label
distribution is principally influenced by a mixture of inter-
pretable and meaningful factors, which typically cause plau-
sible edges connected to the anchors. Under the scenario of
each factor, we specifically collect the subset of graph edges
and then convolute them with face samples to regress a mean-
variance label distribution. During the training process, the
mixture hyperparameters of our label distribution are itera-
tively optimized by following the Expectation-Maximization
schema. Extensive experimental results on three challenging
widely-evaluated datasets indicate the superiority in compar-
isons with most state of the arts.

Index Terms— Facial age estimation, label distribution
learning, subspace learning, causal learning

1. INTRODUCTION

Human age estimation, aiming at predicting the exact biolog-
ical age values based on the given facial images, plays a vital
role in many applications of visual attribute analysis [1, 2].
Recently, although efforts have been devoted to age estima-
tion [3–5], the performance still remains limited especial-
ly under such challenging cases when face samples undergo
large variations including diverse expressions, cross popula-
tions and genders, partial occlusions, etc. This is mainly due
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Fig. 1. Demonstration of Our Insight. Our model aims
to learn a mixture of label distributions which are actually
caused by semantic factors (e.g., expressions, gender, ethnici-
ty, etc.) based on the face neighborhood space. It significant-
ly exploits flexible and real-world facial age label patterns for
robust age estimation. Best viewed in the color pdf file.

to two-fold reasons. On one hand, the relationship of face
data and age labels is usually complexly heterogeneous and
nonlinear [5, 6]. On the other hand, the neighboring age la-
bels undergo ambiguity and correlation [7, 8], since ages are
usually arranged as an order in practice. Hence, this urgently
motivates us to propose robust and accurate facial age estima-
tion particularly versus unconstrained environments.

Conventional age estimation methods could be roughly
categorized into two major ingredients: feature representa-
tion and age predictor. Feature representation-based method-
s [10–12] aim to seek discriminative feature descriptors for
ages based on the face images. Respectively, age predictor-
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Fig. 2. Flowchart of Our NRLD. Our architecture starts with the inputting faces feeding to the prelearned CNN. Having obtained
these deep features, we first construct a neighborhood graph based on the appearance similarity with all possible pairs. Then our
model reasons outK folds of plausible edges within the graph, thus giving rise toK disentangled routings with respect to theK
latent factors. Under each factor, we aggregate the features φ in this routine and project them to a specific mean-variance label
distribution t. Lastly, we learn to fuse with these latent distributions and estimate the flexible and adaptive label distribution for
age estimation. The network parameters are optimized via back-propagation. In the meantime, the mixture hyperparamter of
mean-variance label distributions are iteratively by the widely-employed Expectation-Maximization optimization [9].

based methods [13, 14] basically learn to classify the age
ranker based on the input feature representation. However,
both procedures of seeking feature representation and learn-
ing age predictors are separately optimized, which is like-
ly trapped into sub-optima and thus leads to limited genera-
tion capacity particularly when the target sample is quite dis-
crepant from the training ones. To circumvent this limitation,
deep learning has been adopted recently [4, 8], which allows
the training of an end-to-end system that attempts to allevi-
ate the above drawbacks. Apart from that, label distribution
has been emerged as the widely-employed and state-of-the-art
methods such as [7, 15, 16]. The algorithm typically encodes
a range of age labels to a symmetrical distribution, e.g., Gaus-
sian or triangle distribution, reflecting the smoothness and
correlation for high-performance age estimation. Neverthe-
less, they are constrained to take only fixed-structural form to
model the ambiguous properties of age labels, which is usual-
ly non-robust to complex cross-population face data domains
and even hardly explainable. Therefore, we propose a flexible
label distribution learning approach for age estimation which
is able to address the aforementioned issues.

In this paper, we propose a neighborhood-reasoning label
distribution learning method, dubbed NRLD, typically mod-
eling the heterogeneous face aging data for robust facial age
estimation. In comparison to the conventional label distri-
bution approaches taking a fixed and inflexible form, we in-
tend to infer a sample-specific and adaptive label distribution,
which flexibly introduces meaningful and semantic variations
in the cross-population aging pattern. In this paper, we ar-
gue that the real-world age label distribution should be ex-
plicitly disentangled as a mixture of Gaussian-like distribu-
tions. Moreover, our label distribution is relaxed in a non-
symmetric but convex form. Hence, the learned distributions

are reasoned by a set of interpretable latent factors, e.g., facial
expressions, human genders and populations, as viewed in
Fig. 1. Technically, we first construct the neighborhood graph
adjacent with each anchored sample based on the facial ap-
pearance information. Then our model reasons out different
routings on the neighborhood graph, where each routing at-
tributes to one mean-variance distribution for practical aging
pattern. Our proposed module is readily to be plugged in the
modern very deep feature extractor, e.g., VGG-Face Net [17]
for efficient feature learning. During training process, we
make inferences for the hyperparameters of the mixture dis-
tribution iteratively with the Expectation-Maximization opti-
mization method [18]. Fig. 2 illustrates the flowchart. To
further evaluate the effectiveness of our proposed method, we
conduct extensive experiments on three in-the-wild datasets,
which significantly show the superior performance compared
with existing facial age estimation methods.

2. METHODOLOGY

In this section, we present a detailed description of our prob-
lem formulation, the proposed NRLD model and finally its
alternatively associated optimization procedure.

Problem Formulation. Let X = {(xi, yi)}Ni=1 be the
training set which contains N samples in total, where xi ∈
Rd specifies the i-th face sample consisting of W×H pixels.
As demonstrated in Fig. 2, our architecture starts with batches
of raw face samples. These batches are then fed to the CNN
feature extractor, VGG-Face Net [17], thus performing the
immediate deep feature representation h as follows:

h = CNN(x), (1)

where the CNN(·) function is integrated with a sequence of



convolution operations, nonlinear ReLU functions and fully
connections and the parameters are sequentially adjusted dur-
ing the modeling learning phase. Note that we employ the
modern deep architecture, which is learned by amounts of
face samples with personal identifies, making robust initial-
ization and fast model convergence for network parameters.

Based on one batch of these extracted deep feature hs, our
method reasons about a topological graph with face neigh-
bors. For a clear clarification on the graph-based notations,
we let G = {V,E} denote the constructed graph, integrat-
ed with all possible pairs (m,n) of the face samples in the
input batch. We assume m is fixed as the anchored sample,
which is associated with other samples denoted by n. Con-
sequently, all nodes in the graph are subjected to the rela-
tion (m,n) ∈ E. It means that there exist more than one
edges from anchor m to the neighboring face n. One possi-
ble manner is to learn data-dependent label distribution from
the simple neighborhood graph [16], which likely ignores the
intrinsic various facial attributes and performs the black-box
predictions for pseudo age label patterns.

To address the above issue, we focus on disentangling the
neighborhood graph in K channels with an explainable way,
where each channel can extract different feature φ principal-
ly determined by the latent factors. We let N (·) to specify
the core function of our approach, which aims to estimate the
specific mean-variance label distributions by exploiting the
disentangled neighborhood information. Hence, our objective
can be formulated as minimizing the following optimization:

min
N

N∑
i=1

‖N (xi)− y∗i ‖. (2)

Obviously, the core step in the formulation (2) mainly lies
on learning the parameters of N (·), typically disentangling
the neighborhood under different latent factors in a fully-
supervised manner.

Our architecture interacts with all possible graph edges
and then results in K plausible routings where each routing
only selects a subset of plausible connections. With these
connected relations, our function N (·) disentangles K fac-
tors based on the whole neighborhood graph, thus leading to
K aggregated featuresφk (we ignore the anchor index) where
k is valued from 1 up to K. By doing this, we derive the
feature φ into K parts: φ = [φ1, · · · , φk, · · · , φK ]. From
another perspective, we view the neighborhood graph into K
subspaces where each subspace provides semantic and mean-
ingful factor. Under the scenario of each factor, we project
the aggregated feature denoted φ to one specific Gaussian-
like label distribution by t. Ultimately, we specify mixture
hyperparameter by a set of α and our architecture will esti-
mate these αs to fuse the estimated distributions as a flexible
age label distribution.

Model Learning. In our approach, we assume that the
real-world age label distribution is associated with the fac-
torized face neighborhood containing diverse semantic facial

attributes. Based on this sense, our model seeks folds of la-
tent factors to be disentangled, which cause latent label distri-
butions. Given the constructed graph G with face neighbors
(m,n), we develop a feature aggregation schema denoted by
f(·) (assumed to be anchored by m) to perform φm:

φm = f(hm, {hn ∈ Rdin : (m,n) ∈ E}), (3)

where the dimension of din is consistent with the outputting
dimension of the employed deep CNN feature extractor.

In line with these features φ to be disentangled with K
latent factors, we further learn K specific Gaussian label dis-
tributions denoted by {tk}Kk=1 which are parameterized by
{(µk, σk)}Kk=1. The disentangled label distributions t for the
k-th routing is computed as follows:

tk = MLP(
ϕ(W T

k φk + bk)

‖ϕ(W T
k φk + bk)‖2

), (4)

where {Wk, bk} specifies the parameters representing K la-
tent factors to be disentangled, MLP(·) provides the stack-
ing layers for deeper configuration, and ϕ(·) is the nonlinear
function, respectively. In parallel, we literately estimate the
mixture coefficient α of these latent label distributions and
finally perform the mixture distribution as

ŷ =

K∑
k=1

αktk. (5)

With the learned mixture distribution, we reason out the
disentangled age label distribution under different explainable
factors. Each factor facilitates the discriminative neighbor-
hood information, thus making reinforced robust age label
pattern particularly regarding with faces captured in wild con-
ditions. (refer to visualization in Section 3)

To efficiently optimize (5), we maximize the likeli-
hood function with respect to the parameters including the
mean-variance coefficients and the hyperparameters via EM
schema [9]. In detail, we first initialize µp and σp by the
feedforward execution function in (4) and all mixing hyper-
parameters are assigned to 1

K .
For E-step, we compute the current parameters by using

the following responsibilities:

γ (znp) =
αpt (xn|µp, σp)

C
, (6)

where C =
∑P
j=1 αjt (xn|µj , σj) means a constant variable.

Accordingly, for M-step, we re-estimate other parameters
by evaluating those responsibilities as follows:

µnewp =
1

Np

N∑
n=1

γ (znp)xn, (7)

σnewp =
1

Np

N∑
n=1

γ (znp)
(
xn − µnewp

) (
xn − µnewp

)>
, (8)



αnewp =
Np
N
. (9)

The above EM optimization checks for the convergence of
all parameters of iterations. During inference stage, we first
estimate the sample-specific age label distribution in the test-
ing set. Then we search the maximal age value based on the
probability over every dimension in the projected label distri-
bution.

3. EXPERIMENTS

To evaluate the effectiveness of the proposed method, we
conducted results on three widely-used datasets including
MORPH [19], FGNET [1] and ChaLearn [20]. The face
samples in these datasets usually undergo challenging cases
due to wild conditions. To further reinforce the performance,
we incorporated one large scale face aging database IMDB-
WIKI [21] for model pretraining.

Datasets. MORPH [19]: This dataset standardizes differ-
ent face aging databases, which mainly contains 55608 facial
images with 13000 identities with various races. All samples
with age annotations are particularly in the range from 16 to
77 years old. Averagely, each personal identity has at least
six samples. For fair comparisons, we strictly followed the
experimental settings employed in [5].

FGNET [1]: This dataset collects 1002 face images with
82 personal identities in total. The age range of this dataset
covers from 0 to 69 years old. Due to sparse and imbalance
of this dataset, we only have about 12 samples captured in
unconstrained environments due to facial aspect ratios, illu-
mination and diverse expressions. For fair evaluation setting,
we employed the leave-one-person-out (LOPO) protocol by
following [14].

ChaLearn [20]: This dataset collects 4699 images from
Internet. For its age annotation, the competition organizer
recruited around ten volunteers to manually label the appear-
ance ages. Hence, the final ground-truth for each image in-
corporates with the mean value and the standard derivation.
For experiment setting, we utilized 2476 images for training.
Note that, we only use 1136 images for validation by follow-
ing the standard dataset configuration [20].

IMDB-WIKI [21]: This dataset contains more than half a
billion labeled images of celebrities, which are crawled from
IMDB and Wikipedia. Most of the images contain types of
noise, so it is not suitable for evaluation. However, it is still
a good choice to use this dataset for pretraining. We select-
ed about 200 thousand images by following the database set-
ting [21] to pretrain our network.

Evaluation Metric. In the experiments, we leveraged the
mean absolute error (MAE) [10] which computes the discrep-
ancy between the estimated age values and the groundtruth-
s. Obviously, the lower the MAE value, the better perfor-
mance it achieves. We also used the Gaussian error to evalu-
ate on the ChaLearn dataset by following [20]. In particular,

Table 1. Comparisons of MAEs of our approach compared
with different state-of-the-art methods on MORPH dataset.
We achieve the best performance compared with others.

Method MAE Year
BIF+KNN 9.64 -
LDL [15] 5.69 2013

CPNN [15] 5.67 2013
CS-LBMFL [12] 4.37 2015

ODFL [3] 3.12 2017
M-LSDML [8] 2.89 2018
SADAL [22] 2.75 2019

BridgeNet [5] † 2.38 2019
NRLD 2.35 -

NRLD † 1.81 -

Table 2. The results on MORPH dataset. The performance
of two different settings and their average are reported. Our
method achieves the state-of-the-art performance.

Method Train Test MAE Avg Year
BIF+KCCA S1 S2+S3 4.00 3.98 2013

S2 S1+S3 3.95
DRFs [6] S1 S2+S3 - 2.98 2018

S2 S1+S3 -
BridgeNet [5] † S1 S2+S3 2.74 2.63 2019

S2 S1+S3 2.51
NRLD S1 S2+S3 2.48 2.47 -

S2 S1+S3 2.46
NRLD † S1 S2+S3 2.35 2.34 -

S2 S1+S3 2.33

the Gaussian error is computed via the following equation:
1−
∑N
i=1 exp

(
− (ŷi−y∗i )

2

2σ∗2

)
,where ŷ is the predicted age val-

ue, y∗ is labeled mean age apparent age, σ∗ is the annotated
standard deviation andN specifies the number of testing sam-
ples, respectively.

Implementation Details. For each input image, we first
detected the whole face with MTCNN [23]. Then we aligned
it based on the detected facial landmarks. We augmented all
images with horizontal flipping. We employed the VGG Face
Net as the backbone network and modified the last four layers
with our proposed disentangle module. On the MORPH and
FGNET datasets, the initial learning rate of CNN part was set
to 0.001. To accelerate training convergence, the initial learn-
ing rate of the disentangle module was set to 0.01. Notably,
for the ChaLearn dataset, the learning rate was reduced by ten
times to avoid overfitting. We additionally prelearned the net-
work by IMDB-WIKI [21] data. Note that we used † as the
final performance with auxiliary IMDB-WIKI dataset.



Fig. 3. Examples of face images and NRLD results. For each anchor face image, we obtained its neighbors based on appearance
similarity and then reasoned out K (here we set to 8) different label distributions with respect to the factors. Here, we only
visualized three factors thus leading to a better clarification. Finally, we fused these latent distributions and estimated the
flexible and adaptive label distribution for age estimation. (Best viewed on a monitor when zoomed in.)

Table 3. Comparisons of MAEs of our approach compared
with state-of-the-art methods on FGNET dataset. Our NRLD
yields compelling performance compared with BridgeNet [5].

Method MAE Year
BIF+KNN 8.24 -

OHRanker [14] 4.48 2011
LDL [15] 5.77 2013

CPNN [15] 4.76 2013
CS-LBMFL [12] 4.36 2015
M-LSDML [8] 3.74 2018
SADAL [22] 3.67 2019

BridgeNet [5] † 2.56 2019
NRLD 3.23 -

NRLD † 2.55 -

Comparisons with State-of-the-art Methods. We com-
pared our approach with folds of state-of-the-art methods.
We carefully conducted the experiments of the state-of-the-art
methods [12,14,21] by their released source codes. For other
methods, we strictly reported their performance by cropping
the results from the original papers. Besides, we carefully
followed the settings in [5] and [3].

Table 1, Table 2 show the MAEs of our approach on
MORPH dataset with different settings and Table 3 shows the
results on FGNET dataset, respectively. From the results, we
see that our model achieves competitive performance com-
pared with the state-of-the-art methods and even achieves bet-
ter performance than recent label distribution learning meth-
ods. Moreover, we made three-fold conclusion: (1) The tra-
ditional methods such as DEX [21] and ODFL [3], treat each
age label independently without taking ordinal relation into
account. However, our label distribution learning method re-
considers the age labels by introducing the correlation infor-
mation across a set of adjacent age labels. Consequently, the
label distribution accurately and flexibly simulates the real-
world age patterns. (2) Unfortunately, some label distribution
learning methods such as LDL [15] and CPNN [15] which on-

Table 4. Comparisons of MAEs and Gaussian errors of our
NRLD compared with state-of-the-art methods on ChaLearn.
It can be seen that our approach outperforms existing models.

Method MAE Gaussian Error Year
BIF+KNN 7.19 0.620 -
l2 Regression 5.05 0.456 -

Han et al. [24] 5.2 0.449 2018
DEX [21] 3.44 0.299 2018

DLDL-v2 [25] 3.14 0.272 2018
ODL [3] 3.95 0.312 2019

BridgeNet [5] † 2.98 0.26 2019
NRLD 3.64 0.312 -

NRLD † 2.78 0.233 -

ly enforce a fixed-structural pattern on the age label distribu-
tion (i.e., ”Gaussian” or ”Triangle”), likely result in inflexibly
adaptive to real-world face aging data. Benefiting from the
data-dependent manner, our method captures more seman-
tic information and achieves diverse and explainable distri-
butions. (3) Particularly from the results on FGNET, we see
that our NRLD outperforms most state of the arts even with
limited training data. This achievement is due to that the fac-
torized neighborhood space complements various age-related
semantic information to reinforce our label distribution. Thus,
our model slightly relies on large-scale data. Besides, we con-
ducted experiment on the very challenging ChaLearn. Table
4 tabulates the MAEs and Gaussian errors compared with the
state-of-the-arts on the ChaLearn dataset. From the result-
s, we figure out that our NRLD achieves comparable perfor-
mance in contrast to other methods, which also reflects the
effectiveness of our approach.

Visualization of our mixture distributions. To better
demonstrate the insight of our NRLD intuitively, we visual-
ized some examples of our learned distributions. As shown in
Fig 3, we observed that the learned label distributions based
on the face neighborhood space are various. The factors for



being a neighbor are expressions, gender, ethnicity and so on.
These examples indicate that most reasoned factors contribute
to the diversity of age patterns and make the sample-specific
age label distribution better fit the real-world face data.

4. CONCLUSIONS

In this paper, we have proposed a neighborhood-reasoning
label distribution (NRLD) learning for facial age estimation.
The proposed NRLD has explicitly illustrated that the sample-
specific age label distribution is principally influenced by a
mixture of interpretable and meaningful factors. Experiments
on three datasets have shown the effectiveness of the proposed
approach. In the future work, we will focus on few-shot learn-
ing to resolve the class imbalance.
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