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Facial Age Estimation
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Can you figure out how old  he/she is?



Challenges

 They are of nearly the similar ages!
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Zhi-ying Lin (1974) De-gang Guo (1973)



Challenges

 Celebrities of different ages look alike in appearance.
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Brad Pitt (1963) Leonardo DiCaprio (1974)



Why Challenging?

 Apparent Age Estimation [ICCVW 15]

 Challenges

• Large variances due to facial expressions and occlusions 

• Appearance changes with different facial make-up

• Limited training samples/missing labels

• Label correlation for our human ages (real world)
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 Facial Age Estimation Framework

 Conventional Methods for Facial Age Estimation：

 Feature Extraction (Requiring Much Strong Prior Knowledge)

- Hand-crafted Features: BIF, LBP, SIFT

- Shallow Feature Learning: CS-LBFL [Lu et al, T-IP 2015]

Age Predictor (Imbalance of Class/Training Sample)

- LDL [Geng et al, T-PAMI 2013 ]

- OHRANK [Chen et al, CVPR 2012]

Conventional Methods
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Age Estimation by Deep Learning

 Why Deep Feature Learning?

 Learning Features directly from raw pixels

Modeling Nonlinear Relationship between Pixels and Labels

 Transfer Learning (Fine-tuning)

 Label Correlation

 Ordinal Regression [Niu et al, CVPR 2016]

 Missing Labels [Liu et al, PR 2017]

 Goal: Jointly learning feature descriptors for face representation
and exploiting the relationship of human age labels

 ISSUES

• Hard/Semi-hard examples are meaningful (violates)

• Hard-Mining in unobserved space [Duan el al, CVPR 2018]

82019/7/8 Ningxia University, China



Our Insight
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 Two-fold criterions:

 The distance between

each pair from different

classes with a small

age gap (circle and

triangle) is smaller than

that from a negative

pair with a large age

gap (circle and square).

 The distances of the

pairs with same ages

should become as

smaller as possible.
Blue:         existing training samples

Orange:   generated hard-negatives



Main Contributions

 Our method aims to seek batches of unobserved hard-
negative samples based on existing training samples,
which typically reinforces the discriminativeness of the
learned feature representation for facial ages.

 Motivated by the fact that age labels are usually
correlated in real-world scenarios, we carefully develop
a similarity-aware function to well measure the
distance of each face pair based on the age value gaps.
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Proposed Framework
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Objective Formulation
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The generator G aims to generate hard-negative samples 

in which the learned metric would misclassify.

The discriminator D optimizes a discriminative distance 

metric, where the inter-class separability, intra-class 

compactness and label correlation of age classes are 

exploited to characterize the feature similarity 

simultaneously.



Hard-Negative Generation
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Similarity-Aware Function
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Age Smoothness

• With this function, the face

pair with a larger age gap has

a higher weight than that with

a smaller age gap.

• At the same time, we amplify

the differences between the

pairs with interval L in the

transformed feature space.



Deep Adversarial Learning
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Experimental Results on Morph
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Comparisons of MAEs with state-of-the-arts

Comparisons of MAEs with different 

deep learning approaches



Experimental Results on FG-NET
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Comparisons of MAEs compared with 

state-of-the-art approaches.
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