

ICME 2019

Similarity-Aware Deep Adversarial Learning for Facial Age Estimation

Penghui Sun, Hao Liu*, Xing Wang, Zhenhua Yu and Suping Wu

Ningxia University, China

https://haoliuphd.github.io/paper/ICME2019Oral.pdf

Corresponding Author

□ Hao Liu

- Associate Professor, Ningxia University, China
- Ph.D supervised by Professor *Jie Zhou* and Professor *Jiwen Lu*
- Researches on facial analysis, particularly facial age estimation, face alignment and deep learning.

Selected Publications

- Hao Liu, Jiwen Lu*, Minghao Guo, Suping Wu and Jie Zhou. Learning Reasoning-Decision Networks for Robust Face Alignment, *T-PAMI*, 2019
- Hao Liu, Jiwen Lu*, Jianjiang Feng and Jie Zhou. Two-Stream Transformer Networks for Video-based Face Alignment, *T-PAMI*, 2018
- Hao Liu, Jiwen Lu*, Jianjiang Feng and Jie Zhou. Ordinal Deep Learning for Facial Age Estimation, *T-CSVT*, 2019
- Hao Liu, Jiwen Lu*, Jianjiang Feng and Jie Zhou. Label-Sensitive Deep Metric Learning for Facial Age Estimation, *T-IFS*, 2018

Facial Age Estimation

Can you figure out how old he/she is?

Challenges

□ They are of nearly the similar ages!

Zhi-ying Lin (1974)

De-gang Guo (1973)

Ningxia University, China

Challenges

Celebrities of different ages look alike in appearance.

Brad Pitt (1963)

Leonardo DiCaprio (1974)

Ningxia University, China

Why Challenging?

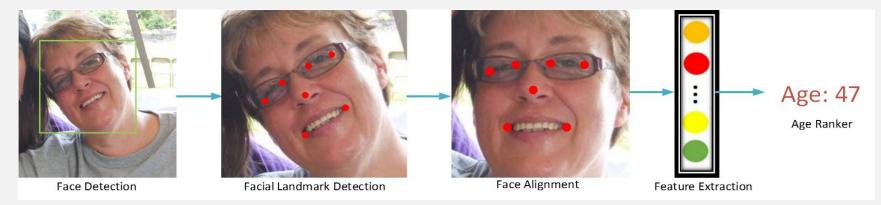
□ Apparent Age Estimation [ICCVW 15]

□ Challenges

- Large variances due to facial expressions and occlusions
- Appearance changes with different facial make-up
- Limited training samples/missing labels
- Label correlation for our human ages (real world)

Conventional Methods

Facial Age Estimation Framework



Conventional Methods for Facial Age Estimation :

- ✓ Feature Extraction (*Requiring Much Strong Prior Knowledge*)
 - Hand-crafted Features: BIF, LBP, SIFT
 - Shallow Feature Learning: CS-LBFL [Lu et al, T-IP 2015]

✓ Age Predictor (*Imbalance of Class/Training Sample*)

- LDL [Geng et al, T-PAMI 2013]
- OHRANK [Chen et al, CVPR 2012]

Age Estimation by Deep Learning

■ Why Deep Feature Learning?

- ✓ **Learning Features** directly from raw pixels
- ✓ Modeling Nonlinear Relationship between Pixels and Labels
- ✓ Transfer Learning (Fine-tuning)

Label Correlation

- ✓ Ordinal Regression [*Niu et al, CVPR 2016*]
- ✓ Missing Labels [*Liu et al*, *PR 2017*]

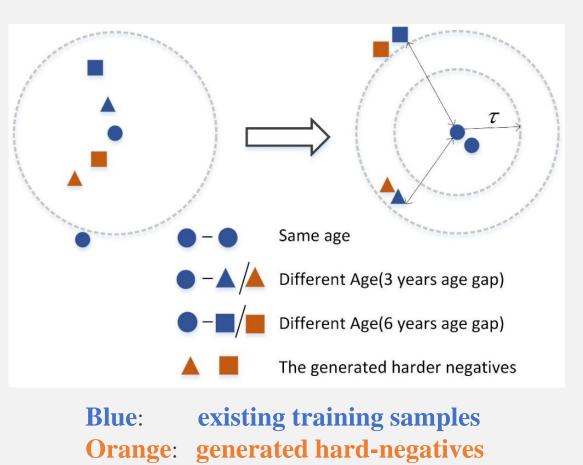
□ Goal: Jointly learning feature descriptors for face representation and exploiting the relationship of human age labels

- Hard/Semi-hard examples are meaningful (violates)
- Hard-Mining in unobserved space [Duan el al, CVPR 2018]

Our Insight

Two-fold criterions:

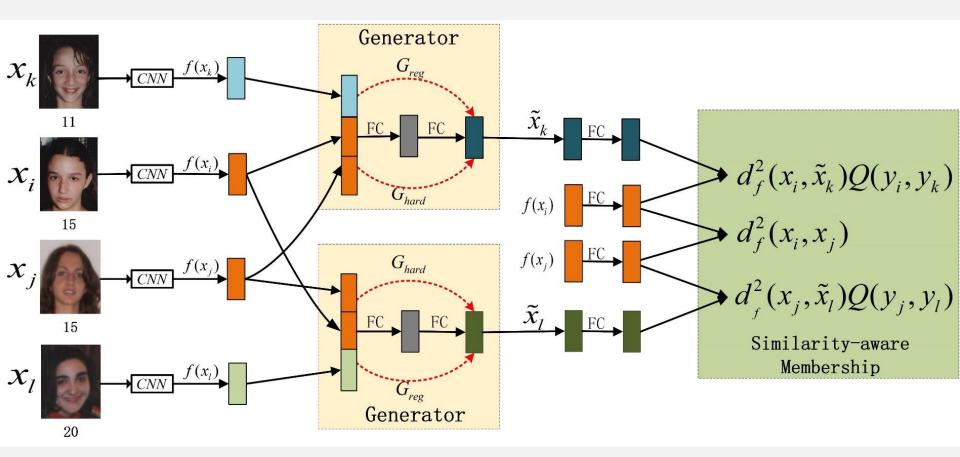
- ✓ The distance between each pair from different classes with a small age gap (circle and triangle) is smaller than that from a negative pair with a large age gap (circle and square).
- ✓ The distances of the pairs with same ages should become as smaller as possible.



Main Contributions

- Our method aims to seek batches of unobserved hardnegative samples based on existing training samples, which typically reinforces the discriminativeness of the learned feature representation for facial ages.
- Motivated by the fact that age labels are usually correlated in real-world scenarios, we carefully develop a similarity-aware function to well measure the distance of each face pair based on the age value gaps.

Proposed Framework



Ningxia University, China

Objective Formulation

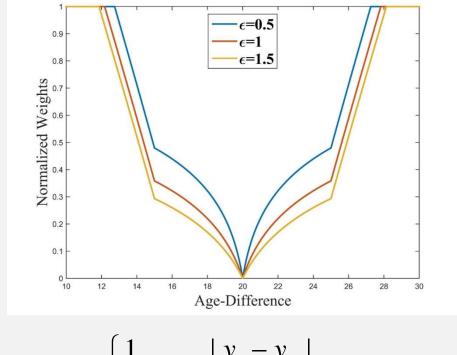
$$\min_{\theta_g,\theta_d} J = G_{(i,j,k,l)} + \lambda D_{(i,j,k,l)},$$

> The generator G aims to generate *hard-negative* samples in which the learned metric would misclassify.

> The discriminator D optimizes a discriminative distance metric, where *the inter-class separability, intra-class compactness* and label correlation of age classes are exploited to characterize the feature similarity simultaneously.

$$\begin{aligned} & \underset{\theta_{g},\theta_{d}}{\min} J = \overline{G_{(i,j,k,l)}} + \lambda D_{(i,j,k,l)}, \\ & \underset{\theta_{g}}{\min} G_{(i,j,k,l)} = \overline{G_{hard}} + \overline{G_{reg}} + \overline{G_{adv}}, \\ & \text{Subject to} \end{aligned}$$

Similarity-Aware Function



$$\mathbf{Q}(y_m, y_n) = \begin{cases} \frac{1}{L} \ln(1 + \frac{|y_n - y_m|}{\varepsilon}), & |y_m - y_n| \le L\\ \frac{|y_n - y_m|}{L} - C, & otherwise \end{cases}$$

Age Smoothness

- With this function, the face pair with a larger age gap has a higher weight than that with a smaller age gap.
- At the same time, we amplify the differences between the pairs with interval *L* in the transformed feature space.

Deep Adversarial Learning

$$\min_{\theta_{g},\theta_{d}} J = G_{(i,j,k,l)} + \lambda D_{(i,j,k,l)},$$
$$\min_{\theta_{d}} D_{(i,j,k,l)} = D_{(i,k)} + D_{(j,l)} + D_{(i,j)},$$

Subject to

$$\begin{split} D_{(i,j,k,l)} &= \sum_{(i,j,k,l)} [\max_{(i,k)\in\hat{N}} (0,\tau - d_f(x_i,\tilde{x}_k)Q(y_i,y_k))^2 \\ &+ \max_{(j,l)\in\hat{N}} (0,\tau - d_f(x_j,\tilde{x}_l)Q(y_j,y_l)) \\ &+ \max_{(i,j)\in\hat{N}} (0,d_f(x_i,x_j))^2]. \end{split}$$

Experimental Results on Morph

Comparisons of MAEs with state-of-the-arts

Method	MAE	Year
BIF+KNN	9.64	-
OHRanker [6]	6.49	2011
LDL [7]	5.69	2013
CPNN [7]	5.67	2013
CA-SVR [22]	4.87	2013
CS-LBFL [9]	4.52	2015
CS-LBMFL [9]	4.37	2015
CSOHR [23]	3.74	2015
DeepRank [24]	3.57	2015
DeepRank+ [24]	3.49	2015
OR-CNN [13]	3.27	2016
ODFL [14]	3.12	2017
LSDML [10]	3.08	2018
M-LSDML [10]	2.89	2018
SADAL	2.75	-

Comparisons of MAEs with different deep learning approaches

Method	MAE
unsupervised VGG + KNN	7.21
unsupervised VGG + OHRanker	4.58
VGG + Single Label	3.63
VGG + Gaussian Label	3.44
ODFL [14]	3.12
SADAL	2.75

Experimental Results on FG-NET

Comparisons of MAEs compared with state-of-the-art approaches.

Method	MAE	Year
BIF+KNN	8.24	-
OHRanker [6]	4.48	2011
LDL [7]	5.77	2013
CPNN [7]	4.76	2013
CSOHR [23]	4.70	2015
CS-LBFL [9]	4.43	2015
CS-LBMFL [9]	4.36	2015
ODFL [14]	3.89	2017
LSDML [10]	3.92	2018
M-LSDML [10]	3.74	2018
SADAL	3.67	-

References

- □ Hao Liu, Jiwen Lu*, Jianjiang Feng and Jie Zhou: Label-Sensitive Deep Metric Learning For Facial Age Estimation. In IEEE Transactions on Information Forensics and Security (T-IFS), 13(2): 292-305 (2018).
- Yueqi Duan, Wenzhao Zheng, Xudong Lin, Jiwen Lu* and Jie Zhou: Deep Adversarial Metric Learning. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2780-2789 (2018).
- Hao Liu, Jiwen Lu*, Jianjiang Feng and Jie Zhou. Ordinal Deep Learning for Facial Age Estimation, IEEE Transactions on Circuits and Systems for Video Technology (T-CSVT), 2018.
- □ Hao Liu, Jiwen Lu*, Jianjiang Feng and Jie Zhou. Group-Aware Deep Feature Learning for Facial Age Estimation, Pattern Recognition (PR), 2017.
- Hao Liu, Penghui Sun, Jiaqiang Zhang, Suping Wu, Zhenhua Yu and Xuehong Sun: Similarity-Aware and Variational Deep Adversarial Learning for Robust Facial Age Estimation. In IEEE Transactions on Multimedia (T-MM), Under Review.

https://haoliuphd.github.io/paper/ICME2019Oral.pdf