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Facial Age Estimation

Can you figure out how old he/she is?

2019/7/8 Ningxia University, China



Challenges

O They are of nearly the similar ages!
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Zhi-ying Lin (1974) De-gang Guo (1973)
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Challenges

O Celebrities of different ages look alike in appearance.

Brad Pitt (1963) Leonardo DiCaprio (1974)
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Why Challenging?

O Apparent Age Estimation [ICCVW 15]
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O Challenges
» Large variances due to facial expressions and occlusions
 Appearance changes with different facial make-up
 Limited training samples/missing labels
 Label correlation for our human ages (real world)
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Conventional Methods

O Facial Age Estimation Framework

Age: 47

Age Ranker

Face Detection Facial Landmark Detection Face Alignment Feature Extraction

O Conventional Methods for Facial Age Estimation:

v’ Feature Extraction (Requiring Much Strong Prior Knowledge)
— Hand-crafted Features: BIF, LBP, SIFT
— Shallow Feature Learning: CS-LBFL [Lu et al, T-IP 2015]

v" Age Predictor (Imbalance of Class/Training Sample)

— LDL [Geng et al, T-PAMI 2013 ]
— OHRANK [Chen et al, CVPR 2012]
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Age Estimation by Deep Learning

O Why Deep Feature Learning?
v’ Learning Features directly from raw pixels
v Modeling Nonlinear Relationship between Pixels and Labels
v Transfer Learning (Fine-tuning)

O Label Correlation
v" Ordinal Regression [Niu et al, CVPR 2016]
v Missing Labels [Liu et al, PR 2017]

O Goal: Jointly learning feature descriptors for face representation
and exploiting the relationship of human age labels

O ISSUES
» Hard/Semi-hard examples are meaningful (violates)
» Hard-Mining in unobserved space [Duan el al, CYPR 2018)
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Our Insight

O Two-fold criterions:

v"  The distance between

each pair from different A

classes with a small .. :>

age gap (circle and A

triangle) is smaller than

that from a negative © ®-@® sameage

pair with a Iarge age .—A/A Different Age(3 years age gap)

gap (circle and square).

_ .—./. Different Age(6 years age gap)
v The distances of the

pairs Wlth same ages A R The generated harder negatives
should ~ become  as Blue: existing training samples
smaller as possible. Orange: generated hard-negatives
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Main Contributions I

» Our method aims to seek batches of unobserved hard-
negative samples based on existing training samples,
which typically reinforces the discriminativeness of the
learned feature representation for facial ages.

» Motivated by the fact that age labels are usually
correlated in real-world scenarios, we carefully develop
a similarity-aware function to well measure the
distance of each face pair based on the age value gaps.
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Proposed Framework
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Objective Formulation

ren’lgn J = G(i,j,k,l) "'/ID(i,j,k,l)’

> The generator G aims to generate hard-negative samples
In which the learned metric would misclassify.

> The discriminator D optimizes a discriminative distance
metric, where the inter-class separability, intra-class
compactness and label correlation of age classes are
exploited to characterize the feature similarity
simultaneously.
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Hard-Negative Generation
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Similarity-Aware Function

Age Smoothness

« With this function, the face
pair with a larger age gap has
a higher weight than that with
a smaller age gap.

Normalized Weights
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Deep Adwversarial Learning I
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Experimental Results on Morph

Comparisons of MAEs with state-of-the-arts

Method MAE  Year
BIF+KNN 0.64 -
OHRanker [6] 6.49 2011

Comparisons of MAEs with different
deep learning approaches

LDL [7] 5.69 2013 Method MAE
Cfsﬂy[l] ig ggg unsupervised VGG + KNN 7.21
CS-IBFL T‘EI 150 2015 unsupervised VGG + OHRanker  4.58

CS-LBMFL[9] 437 2015 VGG + Single Label 3.63
CSOHR [23] 3.74 2015 VGG + Gaussian Label 3.44
DeepRank [24] 3.57 2015 ODFL [14] 3.12
DeepRank+ [24]  3.49 2015 SADAL 275
OR-CNN [13] 3.27 2016
ODEFL [14] 312 2017

LSDML [10] 3.08 2018
M-LSDML [10]  2.89 2018
SADAL 2.75 -
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Experimental Results on FG-NET

Comparisons of MAEs compared with
state-of-the-art approaches.

Method MAE  Year
BIF+KNN 8.24 -
OHRanker [6] 448 2011

LDL |7] 577 2013
CPNN [7] 476 2013
CSOHR 23] 470 2015
CS-LBFL [9] 443 2015
CS-LBMFL [9] 4.36 2015
ODFL [14] 3.80 2017
LSDML [10] 392 2018
M-LSDML [10] 3.74 2018
SADAL 3.67 -

2019/7/8 Ningxia University, China



References

O Hao Liu, Jiwen Lu*, Jianjiang Feng and Jie Zhou: Label-Sensitive Deep
Metric Learning For Facial Age Estimation. In IEEE Transactions on
Information Forensics and Security (T-1FS), 13(2): 292-305 (2018).

O Yueqi Duan, Wenzhao Zheng, Xudong Lin, Jiwen Lu* and Jie Zhou: Deep
Adversarial Metric Learning. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2780-2789 (2018).

O Hao Liu, Jiwen Lu*, Jianjiang Feng and Jie Zhou. Ordinal Deep Learning
for Facial Age Estimation, IEEE Transactions on Circuits and Systems for
Video Technology (T-CSVT), 2018.

O Hao Liu, Jiwen Lu*, Jianjiang Feng and Jie Zhou. Group-Aware Deep
Feature Learning for Facial Age Estimation, Pattern Recognition (PR),
2017.

O Hao Liu, Penghui Sun, Jiagiang Zhang, Suping Wu, Zhenhua Yu and
Xuehong Sun: Similarity-Aware and Variational Deep Adversarial Learning
for Robust Facial Age Estimation. In IEEE Transactions on Multimedia (T-
MM), Under Review.

2019/7/8 Ningxia University, China



THANK YOU! O&A I

https://haoliuphd.github.io/paper/ICME20190ral.pdf



https://haoliuphd.github.io/paper/ICME2019Oral.pdf

