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Facial Age Estimation
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Can you figure out how old  he/she is?



Challenges

 They are of nearly the similar ages!
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Zhi-ying Lin (1974) De-gang Guo (1973)



Challenges

 Celebrities of different ages look alike in appearance.
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Brad Pitt (1963) Leonardo DiCaprio (1974)



Why Challenging?

 Apparent Age Estimation [ICCVW 15]

 Challenges

• Large variances due to facial expressions and occlusions 

• Appearance changes with different facial make-up

• Limited training samples/missing labels

• Label correlation for our human ages (real world)
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 Facial Age Estimation Framework

 Conventional Methods for Facial Age Estimation：

 Feature Extraction (Requiring Much Strong Prior Knowledge)

- Hand-crafted Features: BIF, LBP, SIFT

- Shallow Feature Learning: CS-LBFL [Lu et al, T-IP 2015]

Age Predictor (Imbalance of Class/Training Sample)

- LDL [Geng et al, T-PAMI 2013 ]

- OHRANK [Chen et al, CVPR 2012]

Conventional Methods
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Age Estimation by Deep Learning

 Why Deep Feature Learning?

 Learning Features directly from raw pixels

Modeling Nonlinear Relationship between Pixels and Labels

 Transfer Learning (Fine-tuning)

 Label Correlation

 Ordinal Regression [Niu et al, CVPR 2016]

 Missing Labels [Liu et al, PR 2017]

 Goal: Jointly learning feature descriptors for face representation
and exploiting the relationship of human age labels

 ISSUES

• Hard/Semi-hard examples are meaningful (violates)

• Hard-Mining in unobserved space [Duan el al, CVPR 2018]
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Our Insight
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 Two-fold criterions:

 The distance between

each pair from different

classes with a small

age gap (circle and

triangle) is smaller than

that from a negative

pair with a large age

gap (circle and square).

 The distances of the

pairs with same ages

should become as

smaller as possible.
Blue:         existing training samples

Orange:   generated hard-negatives



Main Contributions

 Our method aims to seek batches of unobserved hard-
negative samples based on existing training samples,
which typically reinforces the discriminativeness of the
learned feature representation for facial ages.

 Motivated by the fact that age labels are usually
correlated in real-world scenarios, we carefully develop
a similarity-aware function to well measure the
distance of each face pair based on the age value gaps.
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Proposed Framework
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Objective Formulation
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The generator G aims to generate hard-negative samples 

in which the learned metric would misclassify.

The discriminator D optimizes a discriminative distance 

metric, where the inter-class separability, intra-class 

compactness and label correlation of age classes are 

exploited to characterize the feature similarity 

simultaneously.



Hard-Negative Generation
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Similarity-Aware Function

2019/7/8 Ningxia University, China 14

| |1
ln(1 ), | |

Q( , )=
| |

,

n m
m n

m n

n m

L

y y
y y L

L
y y

y y
C otherwise




  


 



Age Smoothness

• With this function, the face

pair with a larger age gap has

a higher weight than that with

a smaller age gap.

• At the same time, we amplify

the differences between the

pairs with interval L in the

transformed feature space.



Deep Adversarial Learning
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Experimental Results on Morph
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Comparisons of MAEs with state-of-the-arts

Comparisons of MAEs with different 

deep learning approaches



Experimental Results on FG-NET
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Comparisons of MAEs compared with 

state-of-the-art approaches.
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