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ABSTRACT

In this paper, we propose a similarity-aware deep adversari-
al learning (SADAL) approach for facial age estimation. In-
stead of making access to limited training samples which like-
ly leads to sub-optima, our SADAL seeks sets of unobserved
and plausible hard-examples based on existing training sam-
ples, which typically reinforces the discriminativeness of the
learned feature descriptor for ages. Motivated by the fac-
t that age labels are usually correlated in the real-world ap-
plications, we carefully develop a similarity-aware function
in our approach, which dynamically measures each face pair
with different weights based on different age value gaps. Dur-
ing the learning process, we jointly optimize both procedures
of generating hard-examples and learning age estimator via
a sequence of adversarial-game iterations. As a result, the s-
moothing aging pattern is exploited in the reconstructed hard-
example space for robust age estimation. Experimental re-
sults on two standard benchmarking datasets show that our
approach achieves superior performance compared with most
state-of-the-art age estimation methods.

Index Terms— Facial age estimation, deep adversarial
learning, biometrics.

1. INTRODUCTION

The main purpose of facial age estimation targets on estimat-
ing the precise biologicals ages or age ranks based on the
given facial image, which incorporates with a set of popular
and potential applications such as the facial attributes detec-
tion [1, 2], video content analysis [3, 4] and human-computer
interaction [5]. Despite numerous facial age estimation ap-
proaches have been proposed recently [2, 6–8], the perfor-
mance still remains unsatisfied in practice due to variations in-
cluding different expressions, facial accessories, poses, races,
low resolution or extreme illumination.

Conventional facial age estimation methods can be rough-
ly classified into two categories: facial feature representa-
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Fig. 1. Insight of our SADAL approach. Our basic idea
aims to utilize existing feature points to reconstruct the hard-
negative samples, so that these generated hard-negatives pro-
vide essential complementary information for effective fea-
ture representation or metric learning. Suppose we have the
existing samples (blue) and the generated hard-negatives (or-
ange), we enforce two-fold criterions in our SADAL: 1) The
distance between each pair from different classes with a s-
mall age gap (circle and triangle) is smaller than that from
a negative pair with a large age gap (circle and square). 2)
The distances of the pairs with same ages should become as
smaller as possible. This figure is best viewed in color pdf.

tion [9, 10] and age estimation [6, 8]. Representative facial
feature representation approaches include holistic subspace
features, active appearance model (AAM) [2,5,7], local bina-
ry patterns (LBP) [3, 9], and bio-inspired features (BIF) [1].
Having obtained the feature descriptors for each facial image,
we feed the feature vector to a pre-trained age estimator to
predict the chronological age value. However, the employed
feature descriptors in those methods are hand-crafted, which
usually requires strong expert knowledge by hand-design and
consumes much effort. To address this, learning-based fea-
ture representation has been developed in the recent litera-
ture [9,11], which aim to learn discriminative features directly
from the raw image pixels. While these data-driven methods
achieve promising performance, they ignore the complex and
non-linear relationship between facial images and age labels
especially when faces are captured in wild condition. To cir-
cumvent this, deep learning-based methods [10, 12, 13] have



been leveraged to exploit the relationship between face fea-
tures and aging process via a sequence of nonlinear transfor-
mations. While promising performance has been achieved,
these methods undergo unbalanced training samples during
model learning which likely leads to bias prediction. More-
over, they cannot explicitly exploit the plausible samples in
the unobserved space for robust age estimation.

Besides from developing both types of discriminative
methods on feature representation and age estimator, learning
to ranking has also been applied to be effective on improv-
ing the performance in recent works [13–17]. These meth-
ods typically project face samples to a latent common space,
where the similarity of face pairs is equivalently isotonic to
the age difference in a ranking-preserved manner. For exam-
ple, Chen et al. [16] proposed a ranking-based CNN for age
estimation, which was trained with ordinal age labels repre-
sented by a series of aggregated binary outputs. Liu et al. [10]
proposed a label-sensitive deep metric learning (LSDML) ap-
proach, which aims to mine hard meaningful samples and
learn a similarity distance function via the deep residual net-
work. However, these methods are limited to be learned by
existing samples, which cannot fully describe the distribution
of hard-negative samples [18]. Since a facial image with a
specific age undergoes the facial variations due to facial ex-
pressions, lighting or any other external factors, this may lead
to a neighboring age category as the final bias prediction.

To address the above-mentioned challenges, we propose
a similarity-aware deep adversarial learning (SADAL) ap-
proach for facial age estimation, which attempts to generate
potential hard-examples and learning discriminative metric
in a ranking-preserving manner. Fig. 1 illustrates the basic
idea of the proposed approach. Different from traditional age
estimation methods, our approach aims to reconstruct nega-
tive samples, which provides complementary information for
the existing training samples. To achieve this, we propose
a hard-example generation strategy, where the abundant ob-
served easy negatives can be used to generate potential hard-
negatives to reinforce our model. To further efficiently ex-
ploit the age-difference information in our approach, we care-
fully design a similarity-aware function to dynamically mea-
sure face pairs with different age value gaps between adjacent
ages. By doing this, the distance between the pair from dif-
ferent classes with a small age gap is smaller than that from
a negative pair with a large age gap, and the distances of the
pairs with same ages become smaller. During the training pro-
cess, we globally optimize both tasks of learning similarity-
aware distance metric and mining hard-negatives with a se-
quence of dynamic game iterations. When the game process
reaches Nash equilibrium, the generator restores the true dis-
tribution of the training data and utilizes the observed data
as input to generate hard samples. As a result, the generat-
ed hard-negatives enhance the learned distance metric space,
where the correlation of age labels is exploited simultaneous-
ly for robust age estimation. Experimental results on two

widely-evaluated face aging datasets highlight the effective-
ness of the proposed method.

2. SIMILARITY-AWARE DEEP ADVERSARIAL
LEARNING

As illustrated in Fig. 2, our SADAL mainly learns the gener-
ator and the discriminator simultaneously in an adversarial
manner. Specifically, the generator aims to generate hard-
negatives on which the learned metric would mis-classify.
Accordingly, the discriminator optimizes a discriminative dis-
tance metric, where the inter-class separability, intra-class
compactness and label correlation of age classes are exploited
to characterize the feature similarity simultaneously.

2.1. Hard-Example Generation

Let X = [x1, ..., xi, ..., xN ] ∈ Rd×N be the training set and
Y = [y1, ..., yi, ...yN ] ∈ R1×N be the corresponding age la-
bels, where xi ∈ Rd (1 ≤ i ≤ N) denotes the i-th face image
of d pixels and yi ∈ R1 specifies the chronological age value,
respectively. We feed each batch of facial images into the de-
signed deep convolutional neural networks (CNN) and then
compute the feature descriptors. Specifically, the deep fea-
ture representation is performed by a sequence of operations
as follows:

f(xi) = pool(ReLU(W ⊗ xi + b)), (1)

where ⊗ denotes the convolution operation, ReLU(·) is the
rectifier nonlinear function, pool(·) specifies the max-pooling
operation. In general, the main goal of traditional metric
learning is to measure the similarity between samples, which
aims to maximize the inter-class variations and minimize the
intra-class variations, simultaneously. Based on this, we com-
pute the similarity for each sampled face pair f(xi) and f(xj)
as follows:

df (xi, xj) =‖ f(xi)− f(xj)‖2, (2)

where ‖ ·‖2 denotes the squared Euclidean distance between
each face pairs in the learned feature space.

Similarity-Aware Function: It is worth noting that facial
age estimation especially in unconstrained environments is a
similarity-aware problem, where the similarity of each face
pair with different age values is sensitive to the age smooth-
ness in real-world applications. To achieve the encouraging
performance of facial age estimation, we should pay more at-
tention to the relationship of face pairs based on the similarity
between age differences. Motivated by this, we propose a
similarity-aware function Q(ym, yn) to dynamically measure
the degree of variation face pairs with different age values.
With this function, the face pair with a larger age gap has a
higher weight than that with a smaller age gap. At the same
time, we amplify the differences between the pairs with in-
terval L in the transformed feature representation space by



Fig. 2. Framework of our proposed SADAL. Our SADAL basically consists of the generator and the discriminator. The gener-
ator takes the input with extracted features from a deep CNN. Then it generates discriminative hard-examples to complement
the training space for robust feature learning. Accordingly, the discriminator is equipped with a similarity-aware membership
function, which aims to identify whether the generated sample is fake or real via a pre-trained age ranker. During the training
process, we jointly optimize the generator and the discriminator in an adversarial manner for robust training convergence.

following the Wing-Loss pattern [19]. Fig. 3 illustrates the
similarity-aware function to show how they exploit differen-
t relations for neighboring age classes. Based on the above
senses, we compute the similarity-aware membership for the
given face pair as follows:

Q(ym, yn)=


1
L ln(1 + |yn−ym|ε ), |ym − yn| ≤ L,

|yn−ym|
L − C, otherwise,

(3)

where the non-negative L is a constant parameter that de-
scribes the tolerance level of varying age relationship, ε
denotes the curvature of the nonlinear-region (−L,L) and
C = 1− 1

L ln(1 + |yn−ym|ε ) is a constant that smoothly links
the piecewise-defined linear and nonlinear parts, respectively.
Obviously, we specify Q(ym, yn) ≥ 0 by the value 0 only if
yi and yk are belong to the same age category.

Objective Formulation: Traditional hard-negative min-
ing methods such as [10] only focus on seeking hard-
negatives from existing samples within the training set, which
is limited to describe the full distribution of the hard-negative
space. Moreover, it is very challenging to collect images of
people of all age progression in the personalized real life. This
probably leads to unbalanced data for training, and the po-
tential hard-negatives from the unobserved space would be
misclassified which probably gives rise to bias prediction. In
our approach, we propose a hard-example generation method,
which leverages the observed training samples to produce
plausible hard-negatives and provide the complementary in-

formation for existing training samples. Each time, we sam-
ple a quadruplet (i, j, k, l) of facial images as the input of the
CNN, where the quadruplet composes of two positive point xj
and xi with the same label yi = yj , and two negative points
xk and xl under the label-inequality yi 6= yk 6= yl. After
that, the generator directly concatenates the features (i, j, k)
and (i, j, l) as the input to the generator, and outputs x̃k and
x̃l as the generated hard-example as the input to the discrim-
inator. Overall, we formulate our objective function of the
hard-example generator as follows:

min
θg

G(i,j,k,l) = Ghard +Greg +Gadv, (4)

subject to

G(i,j,k,l) =



∑
(i,j,k)

[‖ x̃k − xi ‖22 + ‖ x̃k − xk ‖22

+max (0, df (xi, x̃k)[1−Q(yi, yk)]− τ)2],∑
(i,j,l)

[‖ x̃l − xj ‖22 + ‖ x̃l − xl ‖22

+max (0, df (xj , x̃l)[1−Q(yj , yl)]− τ)2],

There are three objectives for (4) accordingly: The term
Ghard ensures that the generated the samples which are close
to the positive sample, leading to adversarial hard-negatives.
The term Greg minimizes reconstruction error between the
generated samples and the original ones, which exploits the o-
riginal structure in the transformed subspace. The term Gadv
enforces our training goal that the similarity distance between
the generated negative and the original positive should be s-
maller than a pre-specified threshold τ (assigned to 1 in our



Fig. 3. Illustration of the similarity-aware function, which
typically exploits the age-difference relations for neighboring
age classes. In this example, ym is set as 20 and L is set as
5. It can be figured out that the larger weight Q(ym, yn) is
assigned by the higher difference between yn and ym. By
doing this, the smoothness of age differences is exploited in
the transformed subspace.

experiments). Moreover, the function of [1−Q(·, ·)] in Gadv
is used to exploit the age-difference information smoothly. In
this way, the generator captures the full distribution of train-
ing data via an adversarial manner. These generate hard-
examples likely mislead bias prediction for age estimation.
For robust model training, we introduce an adversarial learn-
ing method to optimize the generator parameters by playing
a dynamic-game with the discriminator, i.e., an age estimator
or a discriminative metric subspace learning across iterations.

2.2. Deep Adversarial Learning

We formulate the objective function of the discriminator by
minimizing the following optimization problem:

min
θd

D(i,j,k,l) = D(i,k) +D(j,l) +D(i,j) (5)

=
∑

(i,j,k,l)

[ max
(i,k)∈

_
N

(0, τ − df (xi, x̃k)Q(yi, yk))
2

+ max
(j,l)∈

_
N

(0, τ − df (xj , x̃l)Q(yj , yl))
2

+ max
(i,j)∈

_
P

(0, df (xi, xj))
2].

There are three objectives for (5): 1) D(i,k) and D(j,l)

in (5) denote the similarity-aware membership score between
the learned feature vectors of face pairs from different classes.
The membership score is enforced larger than the pre-defined
threshold τ , and the goal of D(i,j) is to ensure that the simi-
larity of positive face pairs are minimized. Hence, the margin
between positive-positive pair is minimized and meanwhile

the positive-negative pairs is maximized in the learned sub-
space. 2) The designed similarity-aware function Q(·, ·) is ap-
plied to measure the age-difference information in a ranking-
preserving manner. The dissimilarity between negative pairs
with a small age gap is smaller than that from a negative pair
with a large age gap. Therefore, different weights should be s-
moothly assigned to different negative pairs according to age-
difference values. 3) The training procedure jointly optimizes
both tasks of hard-example generator and the discriminator
for age classification in an adversarial manner. By employing
these objectives in our discriminator, our SADAL achieves
a robust training convergence via the widely-used dynamic-
game iterations.

3. EXPERIMENTS

3.1. Experimental Settings and Implementation Details

We evaluated the performance of the proposed SADAL
method on two widely-evaluated databases including FG-
NET [2] and MORPH (Album2) [20]. For the evaluation met-
ric, we employed the mean absolute error (MAE) [9] to mea-
sure the error between the predicted age and the ground-truth.
For the employed network, we performed the initialization
with VGG Face Net [21] and appended the fully connected
layer. We optimized the new layer with ten times learning
rate compared with other layers for fast convergence. We al-
so used a 2-layer fully connected network as the generator by
concatenating the features as the input. For the parameters of
the designed network, we specified the values of the weight
decay, moment and learning rate empirically to 0.0001, 0.9
and 0.001, respectively. For the parameters of the similarity-
aware function, we empirically specified the values of L and ε
as 5 and 1 to exploit the age-difference information on neigh-
boring age labels, respectively. Besides, we fixed the maxi-
mum training iteration to 20,000 and set the batch-size as 64
for the quadruplet input.

3.2. Experiments on the MORPH dataset

The MORPH (Album 2) dataset [20] consists of 55608 face
images, whose face images were collected from about 13000
people with different races. The age range is from 16 to
77 years old and everyone has about 6-15 face images that
vary slightly by the factors of facial expressions, background,
resolution and illumination. Each face image is labeled
with its chronological age value of the corresponding per-
son. For evaluation on the MORPH dataset, we performed
10-folds cross-validation for evaluation by following the set-
tings in [9]. Specifically, we divided the whole dataset into
ten folds and each fold has the nearly equal size. We used
nine folds as the training set, and the remaining one was used
for the testing set. We repeated this procedure 10 times and
computed the average results as the final age estimation per-
formance.



Table 1. Comparisons of MAEs with different state-of-the-
art approaches on the MORPH dataset. The MAE (in years)
is reported for each method.

Method MAE Year
BIF+KNN 9.64 -

OHRanker [6] 6.49 2011
LDL [7] 5.69 2013

CPNN [7] 5.67 2013
CA-SVR [22] 4.87 2013
CS-LBFL [9] 4.52 2015

CS-LBMFL [9] 4.37 2015
CSOHR [23] 3.74 2015

DeepRank [24] 3.57 2015
DeepRank+ [24] 3.49 2015
OR-CNN [13] 3.27 2016

ODFL [14] 3.12 2017
LSDML [10] 3.08 2018

M-LSDML [10] 2.89 2018
SADAL 2.75 -

Table 2. Comparisons of MAEs with different deep learning
approaches on the MORPH dataset.

Method MAE
unsupervised VGG + KNN 7.21

unsupervised VGG + OHRanker 4.58
VGG + Single Label 3.63

VGG + Gaussian Label 3.44
ODFL [14] 3.12

SADAL 2.75

1) Comparisons with the State-of-the-arts: Table 1 tab-
ulates the MAEs of our SADAL on the MORPH dataset,
compared with state-of-the-arts facial age estimation meth-
ods. Results of the existing state-of-the-art methods are di-
rectly cropped from the related papers. As can be seen, our
SADAL achieves competitive performance with the different
facial age estimation methods and even obtains better perfor-
mance than that of the deep learning methods such as Deep-
Rank [24] and OR-CNN [13].

2) Comparisons with Different Deep Learning Meth-
ods: We also compared our SADAL with different deep
learning methods. To be specific, we first employed the pre-
trained VGG Face Net [21] without the fine-tuning training
as the feature extractors. We created a baseline method with
the unsupervised VGG features and KNN. Then, we deployed
the softmax loss [25] as the single label method, and the deep
label distribution learning [12] as the Gaussian label methods
at the top of the VGG Face Net and fine-tuned the network.
Table 2 tabulates the performance of different deep learning
methods. We see that our model obtains the best performance,

Table 3. Comparisons of MAEs compared with state-of-the-
art approaches on the FG-NET dataset. The MAE (in years)
is reported for each method.

Method MAE Year
BIF+KNN 8.24 -

OHRanker [6] 4.48 2011
LDL [7] 5.77 2013

CPNN [7] 4.76 2013
CSOHR [23] 4.70 2015
CS-LBFL [9] 4.43 2015

CS-LBMFL [9] 4.36 2015
ODFL [14] 3.89 2017

LSDML [10] 3.92 2018
M-LSDML [10] 3.74 2018

SADAL 3.67 -

which is because the structural ordinal relation is exploited by
our model in the learned face feature representation, which
takes advantages of full orders in quadruplet comparisons.

3) Computational Time: Our proposed approach was
implemented under the open-source CAFFE [26] for acceler-
ated deep learning architecture. We trained our model with a
speed-up parallel computing technique by using a single GPU
with the NVIDIA Titan V. Our proposed SADAL converges
at 20000 iterations, which typically consumes around 5 hours
for the training convergence.

3.3. Experiments on the FG-NET dataset

The FG-NET dataset [2] contains 1002 face images from 82
persons. The age range of this dataset covers from 0 to 69
years old, and every identity has about 12 face samples. Each
face image is annotated with its accurate age value of the cor-
responding person. Since the FG-NET dataset is small, we
directly set the learning rate of the 8-10 convolution layer
of VGG Face Net to 0 to prevent over-fitting. Note that we
applied the leave-one-person-out protocol to conduct the age
estimation experiments. Specifically, we selected the face im-
age of one person as the test set, and the remaining were used
for training. After 82 folds, each person has been used as
test set once, and the final age estimation performance are
computed the average results from all the estimates. Table 3
shows the MAEs of our SADAL compared with the state-of-
the-arts. From the results, we see that our SADAL outper-
forms most state-of-the-arts even with limited training sam-
ples, which benefits from the generated hard-examples.

4. CONCLUSIONS AND FUTURE WORK

We have proposed a similarity-aware deep adversarial learn-
ing (SADAL) for accurate facial age estimation. Experimen-
tal results on two datasets show the effectiveness of the pro-



posed approach. It is desirable to address facial age estima-
tion with dual-cycle networks to further exploit the aging pat-
tern specific for personalized aging pattern in future works.
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