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ABSTRACT

In this paper, we propose a multi-agent deep collaboration
learning method (MADCL) for simultaneously detecting 2D
facial landmarks and 3D facial landmarks projected from 3D
to 2D, which aims at distinguishing the ambiguity caused by
different perspectives. Above two facial annotations, there are
a large number of public semantic areas and some very im-
portant private semantic areas. Our single agent captures and
memorizes private features for iterations and multiple agents
collaborate to learn public features. To achieve this, we de-
sign a collaboration learning mechanism to capture, memo-
rize and share semantic information for enhancing the feature
representation. Moreover, the input of traditional cascade re-
gression methods is cropped directly from the raw facial im-
age via the shape-indexed manner, which leads that the poor
initial shapes likely bring about the predicted results getting
worse and worse. We introduce the Markov decision process
(MDP) to reason a better position of the initial shape by a re-
ward function that reflects the shape quality. Authentic exper-
imental results indicate that our MADCL consistently outper-
forms most state-of-the-art methods on two widely-evaluated
challenging datasets.

Index Terms— Face alignment, reinforcement learning,
deep neural network, multi-task learning, biometrics.

1. INTRODUCTION

In the last decades, there were a number of classic and ef-
fective approaches for face alignment [1–4]. For example
Cootes et al. [3] used the appearance model to reconstruct the
face and estimate the shape. However, these reconstructed
approaches cannot capture facial details in complex scenes,
such as large head poses and occlusion. [4–7] addressed the
face alignment as a cascaded regression process, which re-
fine the initial shape to the final shape in a coarse-to-fine
manner. Tzimiropoulos et al. [8] employed linear regressors
are not powerful enough to exploit the complex and nonlin-
ear relationship between the face data and facial shapes. In
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Fig. 1. Our proposed MADCL versus conventional face align-
ment methods. The MHCH uses the Hourglass Network
based on heat map, which leads to the loss of the continuity
and integrity of the facial landmarks in the case of occlusion
and facial mutilation. The MDM is plagued by initialization
problems and falls into local optimization in a large pose. Our
approach mines more semantic information through collabo-
ration learning and introduces initialization adjustment pol-
icy, so that agents can better reason the undamaged facial
shapes and the hidden self-points. For example, the facial
contour lines of 3D landmarks are shown above.

these cases, features employed are hand-crafted, which re-
quires strong prior knowledge by hand. After the applica-
tion of CNNs in this field, works such as [1, 9–13] achieved
breakthroughs of face alignment, which learn discriminative
features directly from pixels. Deng et al. [10] proposed heat
map based approach leads to the loss of the continuity and
integrity of the face shape in the case of occlusion and facial
mutilation.

With the large pose issues taken into consideration, 3D
face fitting methods [2,14] have been considered, which aims
to fit a 3D morphable model (3DMM) [2, 14–16] to a 2D im-
age. This model requires complex 2D mapping of point cloud
data, which requires a lot of computing resources and a large
amount of 3D point cloud data as strong prior knowledge.
Bulat et al. [9] used the similarity of 2D landmarks and 3D
landmarks projected on 2D images to generate 3D landmarks,
which heavily relies on the quality of 2D facial landmarks.

In this paper we propose a multi-agent deep collabora-
tion learning method (MADCL) for robust joint 2D and 3D
face alignment, Fig.1 shows the advantages of our approach



Fig. 2. Our initialization strategy. We defined five actions
as the output of ActionNet: up, right, stop, left, down. The
initial shape is adjusted to the better initialization position in
a limited number of actions before each iteration.

compared with other approaches. We carefully design a com-
munication mechanism to capture more context information.
In addition, we solve the initialization sensitive problem of
traditional cascade regression algorithm to some extent, Fig.2
illustrates our initialization strategy.

The main contributions of our work are summarized as
follows:

1) We model face alignment under different perspectives
as a multi-task learning framework. To achieve this, we de-
sign a cooperative learning for better interaction among multi-
ple tasks. As result, our method learns and memorizes private
features by a single agent, while multiple agents cooperate to
capture and memorize public features.

2) Compared with conventional face alignment meth-
ods, we carefully design a initialization strategy based on
the MDP. Following the RDN [17] our initialization strategy
learns a set of actions from the reward function to adjust the
initial shape of every iteration to the reasonable location for
robust cascade regression process.

2. MULTI-AGENT COLLABORATION MODEL

In our method, we propose a multi-agent sharing feature
information model. We introduce a learning mechanism
to exchange semantic information between 2D-agent and
3D-agent, which was designed to adapt large pose and self-
occlusion estimation, and it can get plausible both 2D and
3D alignment performance in unconstrained environments.
In Fig.3, we illustrate the application of the MADCL for the
task of joint 2D-3D face alignment.

2.1. Collaboration Learning

In the face alignment network, the motivation of this net-
work is learning to extract appearance features mainly includ-
ing information of eyes, mouth, eyebrows, nose, and outline.
Hence, the 2D-agent pays more attention to the salient seman-

tic information of the face and the 3D-agent learns to capture
more context information to reason the self-occlusion points.

As can be seen from the prediction results in Fig.1, the
2D and 3D facial annotations have lots of areas with the same
semantic information. This means that a large number of
public features can be learned from these regions under the
shape-indexed sampler conditions. Moreover, The biggest
difference between two annotations lie in the labeling self-
occlusion points. The 2D facial landmarks utilize the facial
contour points to replace the self-occlusion points, while the
3D facial landmarks directly display these points. These dif-
ferent semantic areas provide the private feature.

As described in Fig.3, we introduce long short-term mem-
ory (LSTM) network [18] as a communication channel be-
tween the 2D-agent and the 3D-agent, which learns and mem-
orizes the public features of 2D and 3D facial landmarks.
With the change of shape-indexed raw patches in the iteration
process, the public features of the the 2D and 3D facial land-
marks are also updated. The LSTM network has a forget gate
and an input gate, which captures consistent public informa-
tion in time sequence more accurately. In particular, a single
agent utilizes a recurrent neural network (RNN) [19] to learn
and memorize the consistency information in the iterative pro-
cess, and this information is private and cannot degrade other
agents.

Let Pt = [p1, p2, ...pL] ∈ R2×L denote the predicted
shape vector with L points at t-th iteration, where pi repre-
sents the coordinates for i-th landmark. Moreover, let P ∗ =
[p∗1, ..., p

∗
L] denote the groundtruth.

Mathematically, our face alignment agent optimizes the
following objective function:

minJ =

T∑
t=1

∥∥∆Pt −
(
P ∗ − P I

t−1
)∥∥2

2
, (1)

where T , ∆Pt, P ∗ and P t−1 denote the number of iteration,
the facial shape residual, the groundtruth and the adjusted re-
sults of previous iteration, respectively.

2.2. Initialization Strategy

Our architecture defines two same agents in the 2D alignment
network and the 3D alignment network to interact within the
MDP with a trajectory of states and actions, a state transition
function, a reward function to evaluate shape quality and a
policy network to seek a sequence of plausible actions.

Action: In our method, we let the adjusting movements
a ∈ {up, right, stop, left, down} over a continuous space
as the MDP action, which means an offset to refine the initial
landmarks as input of the following iterations.

State: The state is defined as the set of facial appearance
features observed based on current shape, which is locally
cropped directly from the raw facial image via shape-indexed
manner. This appearance features serve as the input of the



Fig. 3. Illustration of the proposed collaboration learning execution in our MADCL. Specifically, Our MACDL adjusts shape
between each iteration to avoid the failure to capture meaningful semantic information caused by the poor initialization of
shape. In order to mine more context information, one single agent uses an RNN to learn and memorize private features
between iterations and the output of multiple agents are concatenated together as a input of the LSTM to capture and memorize
public features. where ⊕ denotes concatenate operation and these dotted lines denote repeated operations that are omitted,
respectively.

ActionNet for predicting an action to adjust the location of
the initial shape.

State Transitions: We define a MDP state transition,
which includes two transition processes: the shape change
caused by the action and the features information change
caused by the shape change. For example, at the i-th
adjustment, the shape is adjusted by selected action as
pi+1
t = pi

t + ai. Simultaneously, the observed features
information change as si+1 = o

(
I,pi+1

t

)
.

Reward: The reward function ri reflects the landmark de-
tection quality improvements. It measures the misalignment
descent and is defined as follow:

ri =


ei − ei+1, if a ∈ {up, down, left, right} ,
+η, if a = stop and e0 − ei ≥ 0,

−η, otherwise.

where e and η denote the normalized point-to-point distance
and the empirical value. Note that for the stop action, we use
a different reward value because it leads to a terminate state.

Learning Stage: The reinforcement learning stage aims
to train parameters of ActionNet. The ActionNet performs
five actions and outputs the corresponding Q (s, a). Based on
Q (s, a), the agent will choose the action that is associated
with the highest reward. Q (s, a) iteratively updates using the
Bellman as follows:

Q (s, a) = r + γmaxQ (s′, a′) , (2)

where γ and maxQ (s′, a′) denote the discount factor and the
future maximum benefit.

In order to enable ActionNet to accurately predictQ (s, a),
we minimize following loss to update all parameters:

L = E
[
Q
(
si, ai

)
−
(
ri + γmaxQ

(
si+1, ai+1

))]2
(3)

both agents use the same optimization process, so that each
agent can capture common context information to share.

3. EXPERIMENTS

We presented the wildly used benchmarking datasets, eval-
uation protocols and evaluation settings. In particular, our
model used 3148 images shared by 300-W [20] and 300-
W part of the 3D Menpo static [21, 22]. Specifically, we
used the outer-eye-corner distance as the normalizing factor
and evaluated our method by using the standard normalised
landmarks mean error and the cumulative errors distribution
(CED) curve.

3.1. Datasets

We evaluated our MADCL approach and compared with ex-
isting state-of-the-art methods on the 300-W and the 300-W
part of the 3D Menpo static face alignment datasets.

These annotated face images were collected from com-
pletely unconstrained conditions, which exhibits large varia-
tions in pose, expression, illumination, etc. We utilized the
training sets of LFPW(2000), HELEN(811) and AFW(337)
to train our model. Then we evaluated our method on the
224-image LFPW testing set, the 330-image HELEN testing



Table 1. Comparisons of averaged errors of our proposed
MADCL with the state-of-the-arts on the 2D 300-W (68-lm).

Methods Challenging Common Full
SDM [4] 15.40 5.57 8.35
ESR [5] 17.00 5.28 7.58

LBF [23] 11.98 4.95 6.32
CFSS [6] 9.98 4.73 5.76
PIFA [14] 9.88 5.43 6.30

TCDCN [24] 8.60 4.80 5.54
3DDFA [2] 9.60 4.70 5.98

R-DSSD [25] 8.60 4.80 5.54
MDM [1] 8.87 3.74 4.78
TSR [11] 7.56 4.36 4.99
SBR [26] 8.14 3.39 4.36

MADCL(w/o CM) 6.89 3.53 4.19
MADCL 6.75 3.46 4.11
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Fig. 4. CED curves of our MADCL compared to the state-of-
the-arts on the 2D 300-W fullset.

set as well as the 135-image IBUG. We also investigated our
approach by following another wildly used evaluation setting:
using the LFPW and the HELEN testing set as the Common-
set (554), the 135-image IBUG dataset as the Challengingset
(135), and the union of them as the Fullset (689).

3.2. Results and Analysis

We compared our approach against the state-of-the-art meth-
ods of 2D face alignment on 300-W and 300-W part of the
3D Menpo static. Fig.1 shows the experiment results of our
approach compared with the MHCH and the MDM.

2D face alignment: The results are shown in Table 1,
Fig.1 and Fig.4. We see that our MADCL consistently ob-
tains higher performance than the state-of-the-arts, and even
outperforms previous methods by a large margin since our
MADCL applies initialization strategy to address the local op-
timal problem of conventional cascade methods. Moreover,
we observe that our method performs best among all of the

Table 2. Comparisons of averaged errors of our proposed
MADCL with the state-of-the-arts on the 3D 300-W (84-lm).

Methods Challenging Common Full
CFSS [6] 11.64 5.61 6.79
PIFA [14] 10.41 5.66 6.59

3DDFA [2] 10.20 4.63 5.72
MDM [1] 9.30 4.02 5.13

MHCH [10] 8.39 3.94 4.81
MADCL(w/o CM) 7.31 3.62 4.34

MADCL 7.14 3.55 4.25
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Fig. 5. CED curves of our MADCL compared to the state-of-
the-arts on the 3D 300-W fullset.

state-of-the-art methods on the Challenging subset. This fully
shows that our MADCL approach overcomes the problem of
large poses that the conventional cascade regression methods
have not solved the problem.

3D face alignment: In this subsection, we compared
our MADCL against the state-of-the-art methods on 300-W
part of 3D Menpo static. The results are shown in Table 2 ,
Fig.1 and Fig.5. The 3D landmarks have a large number of
self-occlusion points under the condition of large poses. We
see that our MADCL consistently obtains higher performance
than the state-of-the-arts. Note that our approach significantly
outperforms previous methods by a large margin on the Chal-
lenging subset, which reflects the effectiveness of handling
self-occlusion point reasoning under large head rotations and
extreme poses.

4. CONCLUSION

In this paper, we have proposed a multi-agent deep collabora-
tion learning method (MADCL) for joint face alignment. We
design a collaboration learning mechanism to capture, memo-
rize and share semantic information. The experimental results
have demonstrated the robust results of our approach. How to
use MDP to make multiple agents better collaboration learn-
ing will be a desirable future work.
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