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ABSTRACT

In this paper, we propose a deformable hourglass networks
(DHGN) approach to investigate the problem of face align-
ment, especially in such challenging cases when faces under-
go large variations including severe poses, diverse expression-
s and partial occlusions in unconstrained environments. Un-
like conventional feature extractions which cannot explicitly
exploit irregular geometric structures for facial shapes, our
DHGN learns a deformable mask to reduce the variances of
facial deformation and extract attentional facial regions for
robust feature representation. To achieve this, we carefully
design a differential module, dubbed the deformable trans-
former, which typically incorporates with a regression sub-
net to predict a set of offsets and a masking operator to filter
the semantic facial parts for feature representation learning.
To further reinforce the alignment performance, we integrate
our designed modules in the paradigm of stacked hourglass
networks and jointly optimize the network parameters in an
end-to-end manner. Extensive experimental results demon-
strate very compelling performance in comparisons to most
state-of-the-art methods.

Index Terms— Face alignment, deep learning, hourglass
network, spatial transformer, biometrics.

1. INTRODUCTION

The basic goal of face alignment (a.k.a., facial landmark lo-
calization) aims to detect a set of facial landmarks based on
the facial appearance of the input image, which plays a sig-
nificant pre-processing step for many facial attribute analysis
tasks such as head pose estimation [1], facial expression [2],
3D geometric reconstruction [3], visual tracking [4, 5], etc.
While many efforts have been devoted in recent literatures [6–
12], the performance still remains unsatisfactory in practice e-
specially when faces were captured in unconstrained environ-
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Fig. 1. Our proposed DHGN versus conventional masks.

ments. This is mainly because the relationship between face
appearances and the variations of facial shapes is complexly
nonlinear due to many difficulties, e.g., large poses, varying
expressions and severe occlusions. This quite motivates us to
propose a robust face alignment approach versus sets of un-
constrained scenarios.

Cascade regression has emerged a dominant role in the
areas of face alignment recently [6–9], which targets on seek-
ing a series of discriminative mappings between local features
and facial shape coordinates. By doing this, the facial shape
is refined starting from the initialization in a coarse-to-fine
manner. For examples, Xiong et al. proposed a supervised
descent method (SDM) [7] which learns a set of linear map-
pings from the extracted local SIFT features by using the gra-
dient descent method. To further improve SDM, Trigeorgis
et al. developed a Mnemonic Descent Method (MDM) [13],
making a cascade of networks to exploit the nonlinear rela-
tionship between face appearance and shape variations, which
achieves promising performance by a large margin. In the
term of the feature extraction method, they usually utilize the
shape-index mask [9,14] to sample face regions with fixed ge-
ometric structures and then extract local features on them for
coordinate regression. Moreover, these methods constrained-
ly explore partial features and even ignore the shape-sensitive
information, which likely falls into local optima when the ini-
tial shape is far away from the target shape. To circumvent



Fig. 2. Architecture of our DHGN.

this problem, heat map-based regression models [10,11] have
been proposed to take in the whole global face image and
deploy an symmetric encoder-decoder deep architecture for
facial landmark localization. Another major benefit of these
methods is that they regard the heat maps as the regression tar-
gets, which significantly preserves the spatial constraints and
relatively improves the performance [15,16]. However, meth-
ods in this category apply convolutional operation with a fixed
geometric structures, which likely losses shape-informative
details and cannot explicitly exploit the facial shape variation-
s in such cases when faces were captured in wild conditions.
Fig. 1 visualizes some failure cases where the features are ex-
tracted via the limited fixed geometric structures. Taken two
face alignment methods CFAN [9] and LBF [14] as the com-
pared baselines, where CFAN provides a set of rectangles to
extract shape-sensitive patches to exploit local features, and
LBF learns the random pixel difference as the local features
to preserve the shape-index constraint. Both methods obvi-
ously loss shape-informative details during feature extracting,
which may give rise to the bias prediction. Quite differently
from both methods, our DHGN automatically explores de-
formable ROI regions to exploit discriminative features for
robust face alignment. It can be seen that the resulting align-
ment samples obviously highlight the superiority of our pro-
posed approach.

In our approach, we propose a deformable hourglass
networks (DHGN) approach for robust face alignment espe-
cially when faces were captured in unconstrained conditions.
Different from existing face alignment approaches which in-
tegrates with fixed geometric structures for feature extraction,
our DHGN develops an enhanced deformable transformer
module to explore the attentional facial parts with irregular

receptive fields. Specifically, our designed transformer incor-
porates with two key modules including the transformation
regression subnet and a masking operator. The transforma-
tion regression subnet is designed to estimate a set of offsets,
which aims to refine the positions of observation windows.
Accordingly, the masking operator automatically crops the
attentional regions based on the observation windows and
provides plausible shape-sensitive information for robust fea-
ture representations. It should be noted that the transformer
module is totally differential throughout the whole deep ar-
chitecture. Having obtained the extracted attentional parts,
we apply deformable convolution neural networks on them
to reinforce the deformation of the receptive fields. Finally,
we integrate the hourglass networks with our transformer
module and stacked them to further improve the alignment
performance. During training process, the network param-
eters are achieved by using the standard back-propagation
algorithm in an end-to-end manner. Fig. 2 illustrates the de-
tailed flowchart of our DHGN. To evaluate the effectiveness
of the proposed approach, we conduct sets of experiments on
four benchmark datasets and the results indicate very com-
petitive performance compared with other state-of-the-art
methods.

The main contributions of this work are summarized in
the following two-fold aspects:

1) Compared with conventional regression-based face
alignment methods, we carefully design a deformable
transformer module to learn a set of offsets by directly
feeding the input of feature maps. With these offset-
s, the deformable masking is leveraged to exploit the
attentional face regions and achieves discriminative
shape-informative features for robust face alignment.

2) The developed transformer module is approximately d-
ifferential and can be readily integrated in the backbone
alignment networks (e.g., hourglass). Hence, this end-
to-end training schema teaches an optimal optimization
target and enhances the capacity of the regression mod-
el, which further reinforces the alignment performance.

2. DEFORMABLE HOURGLASS NETWORKS

Unlike existing deep learning-based methods that are inher-
ently limited to model the deformable geometric structures,
the basic idea of our proposed Deformable Hourglass Net-
works (DHGN) is to enhance the spatial sampling locations in
the modules with additional offsets and learning these offsets
from the alignment error function, without using any auxil-
iary supervision signals. The proposed module can readily
integrate with the existing hourglass networks [16] architec-
ture which was designed adapted for pose estimation. Hence,
the whole networks can be easily trained end-to-end by stan-
dard back-propagation, giving rise to plausible alignment per-
formance even in unconstrained environments.



Problem Formulation: Suppose we have N training face
samples denoted by I , we let p = [p1, p2, · · · , pL] ∈ P ∈
R2×L denote L heat maps with L points, where pi = pi(j, k)
represents the horizontal j and vertical k coordinates for the
i0-th landmark, the vector p∗ = [p∗1, · · · , p∗L] denote the
groundtruth maps, respectively. The main goal of our model
is to minimize the discrepancy between the landmark maps
and groundtruth as follows:

J =
1

N

N∑
i=1

∑
j,k

‖fDHGN (Ii)− pi(j, k)‖22 (1)

where ‖ · ‖2 denotes the `2 norm to measure the heat map
residuals and fDHGN provides the network parameters of the
proposed DHGN network architecture including deformable
transformer and hourglass modules, respectively.

Deformable Transformer Module: The objective of our
model is to learn the network parameters in fDHGN via (1).
Motivated by the intuitions from [17, 18], we develop a de-
formable transformer module, which requires to learn a set of
transformation offsets and then refine the positions of sam-
pling mask without any supervision signals. With the de-
formable masking, the attentional facial-part features are ex-
ploited for robust face alignment. Specially, our module typ-
ically consists of a deformable regression subnet and a de-
formable masking operator. The regression subnet is designed
to produce the offset values, while the masking operator aims
to filter the attentional regions directly from the input maps
and then feed them to the backbone alignment networks.

As demonstrated in Fig. 2, the input of the proposed de-
formable transformation is U which contains the same size
with the face input. Our regression subnet is fed with feature
map U and then directly estimate a set of offsets denoted by
∆p with the dimension of L landmarks for deformable mask-
ing. Obviously, we noted that the regression subnet is differ-
ential and the offsets is leveraged to refine the positions of
the initialized mask p0, i.e. statistical mean shape, by adding
∆p. Having obtain the refined mask located at p0 + ∆p, our
designed masking operator crops the local patches based on
the new mask and then feed them to the deformable CNN. As
a result, the output feature maps V are explored with the de-
formable receptive fields by following [18], rather than using
the conventional CNN with fix geometric structures.

Suppose we have these cropped patches denoted by
xt (p + d), where d is the patch size that was specified to
26 in our experiments. To perform an end-to-end optimiza-
tion procedure, we also provide the derivatives of the shape
with respect to the loss, which is computed for each landmark
p (certain point from the shape p) as follows:

∂J

∂p
=

∂x
∂p

∂J

∂x
, (2)

∂x
∂p

= ∇(x(p + d)), (3)

where d is the size of sampled shape-index patches, x(p) de-
notes the pixel value located at the landmark p and∇ denotes
the gradient-image w.r.t the cropped image patch, respective-
ly. Since the derivatives of the shape-image are not strictly
differentiable for 2D images, the value is approximated by
the gradient of the image. Specifically, ∇(x(p + d)) is calcu-
lated by the Sobel operator in size of d×d which is convolved
on the image patches. The final result is summed up by per-
forming gradients of total landmarks.

During training procedure, the network parameters of the
deformable transformer are learned by using standard back-
propagation and alignment loss function (1). In another sense,
both the regression subnet and masking operator is approxi-
mately differential and can be readily integrates in existing
alignment networks (hourglass networks [16] module is em-
ployed in our work) for end-to-end feature learning.

Backbone Hourglass Networks: Generally, there exist
a number of possible solutions which can be used to exploit
the regression functions for face alignment. In our work, we
exploit the widely-used hourglass networks as the backbone
alignment network. Specifically, the hourglass networks are
passed across different scales and consolidated to best capture
various spatial relationships associated with facial landmarks,
where the multi-scale and spatial attentional information are
simultaneously exploited for robust feature extraction. Com-
pared with traditional coordinates-based regression, the hour-
glass modules leverage a final set of predictions of heat maps
to reduce the variations of the regression target. To further
improve the capacity of the deep regression model, we ex-
pand on a single hourglass by consecutively placing multiple
hourglass modules together in an end-to-end manner [16].

Inference of face alignment: Having obtained the output
resolution of our DHGN network, two consecutive rounds of
1×1 convolutions are applied to produce the final network
predictions. The output of the network is a set of heat maps,
where the map typically predicts the probability of each fa-
cial landmark’s presence at every pixel. Hence, we regard the
positions by maximizing the responses as the resulting coor-
dinates for fine-grained facial landmark localization.

3. EXPERIMENTS

To evaluate the effectiveness of the proposed method, we con-
ducted folds of experiments on the standard benchmarks.

Evaluation Datasets and Protocol. 300-W [19]: This
dataset is composed by several sub-datasets for training and
testing, i.e., LFPW [20], HELEN [21], AFW [1], XM2VTS [22]
and IBUG [23], where the 300-W organizer provides 68-pts
annotations. By strictly following the 300-W protocol, we
trained our model with the LFPW training set, the HELEN
training set, the AFW dataset and tested it on the LFPW
testing set, the HELEN testing set and the IBUG dataset,
respectively. Moreover, we investigated our approaches on
another dataset setting, where we consider the testing sam-



Table 1. Comparisons of averaged errors (100%) normalized
by inter-pupil-distance of our DHGN with existing method-
s in chronological order on the 300-W (68-lm) Commonset,
Challengingset and Fullset. Compared with these methods,
our model achieves very competitive performance.

Method Commonset Challengingset Fullset
FPLL [1] 8.22 18.33 10.20
DRMF [25] 6.65 19.79 9.22
RCPR [24] 6.18 17.26 8.35
SDM [7] 5.57 15.40 7.50
LBF [14] 4.95 11.98 6.32
CFAN [9] 5.50 16.78 7.69
CFSS [8] 4.73 9.98 5.76
TCDCN [26] 4.80 8.60 5.54
RAR [27] 4.12 8.35 4.94
MDM [13] 4.83 10.14 5.88
DSSD [28] 4.16 9.20 5.59
DeepReg [29] 4.36 7.42 4.96
TCD [10] 3.67 7.62 4.44
CPR [30] 3.39 8.14 4.36
DHGN 3.38 6.23 3.95

ples from the LFPW and HELEN datasets as the Commonset
and the 135-image IBUG dataset as the Challengingset, and
the union of them as the 689-image Fullset. COFW [24]:
The Caltech Occluded Face in the Wild (COFW) dataset
consists of 1345 training face images and 507 testing face
images, which were collected from the Internet. All face
images are annotated with 29 landmarks together with the
visibility/invisibility information. We conducted experiments
and evaluated our methods only on its testing set. Note
that our model was trained on the training samples from the
300-W dataset, without using any training images from the
COFW dataset. For the evaluation protocol, we employed the
root mean squared error (RMSE), where the point-to-point
discrepancy is normalized by the inter-ocular distance. Be-
sides, we averaged the RMSEs of testing frames within each
division and then average them as the final performance.

Implementation Details. For the input data prepara-
tion, we detected faces on the whole dataset by enlarging the
groundtruth annotations. Then we rescaled both the detected
facial images with padding zeros and the corresponding an-
notations with the restricted output scales 64×64. The input
image first passes through max pooling in the size of 2×2.
Then the downscaled features are processed by a bottom-up
layers including three convolutional layers with kernels [128,
128, 256]. The following layers is equipped with a sym-
metric top-down structure. In addition, a residual module
is deployed for multi-scale message passing across layers.
In the term of the stacking hyper-parameter of our model,
we found using four hourglass modules are sufficient for
high-performance alignment performance.

Results and Analysis. We compared our proposed D-

Table 2. Comparison of the averaged errors and the failure
rates (threshold at 0.08%) on the COFW dataset. Our DHGN
significantly achieves robustness to severe partial occlusions.

Method Averaged Error Failure Rate (%)
FPLL [1] 8.79 38.46
ESR [6] 11.20 36.00

RCPR [24] 8.50 20.00
HPM [31] 7.46 13.24
RPP [32] 7.52 16.20
SDM [7] 8.77 24.32
CFAN [9] 8.38 19.14

TCDCN [26] 8.05 15.31
DSSD [28] 6.17 8.23

DHGN 5.29 6.94

HGN with the state-of-the-art face alignment methods and
Table 1 tabulates the comparisons of averaged errors of our
method compared with the state-of-the-arts on 300-W dataset.
From these results, we see that our proposed DHGN signif-
icantly outperforms other face alignment methods by a large
margin, which is because our designed deformable modules
exploit more cues to learning discriminative features for ro-
bust face alignment. We also evaluated our approach on the
COFW dataset regarding of occlusions and the results are tab-
ulated in Table 2. From the results, we achieve very com-
pelling performance on the challenging cases due to large
poses, diverse expressions and severe occlusions. This also
proves the effectiveness of the proposed deformable masking
method, where these learned shape-sensitive cues are helpful
to promote the alignment performance.

4. CONCLUSION

In this paper, we have proposed a deformable hourglass net-
works (DHGN) approach for robust face alignment. The ex-
perimental results have demonstrated the effectiveness of the
proposed approach on several widely-evaluated face align-
ment datasets. One desirable direction of this work is to re-
strict the testing time tolerance and to plug some runtime deep
compression strategies in the meantime of the shape updates,
e.g., by following the runtime network pruning in the future
works.

5. REFERENCES

[1] Zhu, X., Ramanan, D.: Face detection, pose estimation,
and landmark localization in the wild. In: CVPR. (2012)
2879–2886

[2] Jung, H., Lee, S., Yim, J., Park, S., Kim, J.: Joint
fine-tuning in deep neural networks for facial expression
recognition. In: ICCV. (2015) 2983–2991



[3] Liu, F., Zeng, D., Zhao, Q., Liu, X.: Joint face alignment
and 3d face reconstruction. In: ECCV. (2016) 545–560

[4] Liu, H., Lu, J., Feng, J., Zhou, J.: Two-stream trans-
former networks for video-based face alignment. TPA-
MI 40(11) (2018) 2546–2554

[5] Bouwmans, T., Javed, S., Zhang, H., Lin, Z., Otazo, R.:
On the applications of robust PCA in image and video
processing. Proceedings of the IEEE 106(8) (2018)
1427–1457

[6] Cao, X., Wei, Y., Wen, F., Sun, J.: Face alignment by
explicit shape regression. In: CVPR. (2012) 2887–2894

[7] Xiong, X., la Torre, F.D.: Supervised descent method
and its applications to face alignment. In: CVPR. (2013)
532–539

[8] Zhu, S., Li, C., Loy, C.C., Tang, X.: Face alignment
by coarse-to-fine shape searching. In: CVPR. (2015)
4998–5006

[9] Zhang, J., Shan, S., Kan, M., Chen, X.: Coarse-to-fine
auto-encoder networks (CFAN) for real-time face align-
ment. In: ECCV. (2014) 1–16

[10] Kumar, A., Chellappa, R.: Disentangling 3d pose in
a dendritic cnn for unconstrained 2d face alignment.
CVPR (2018)

[11] Wu, W., Qian, C., Yang, S., Wang, Q., Cai, Y., Zhou, Q.:
Look at boundary: A boundary-aware face alignment
algorithm. In: CVPR. (2018)

[12] Kowalski, M., Naruniec, J., Trzcinski, T.: Deep align-
ment network: A convolutional neural network for ro-
bust face alignment. In: CVPR. (2017) 2034–2043

[13] Trigeorgis, G., Snape, P., Nicolaou, M.A., Antonakos,
E., Zafeiriou, S.: Mnemonic descent method: A recur-
rent process applied for end-to-end face alignment. In:
CVPR. (2016) 4177–4187

[14] Ren, S., Cao, X., Wei, Y., Sun, J.: Face alignmen-
t at 3000 FPS via regressing local binary features. In:
CVPR. (2014) 1685–1692

[15] Yang, J., Liu, Q., Zhang, K.: Stacked hourglass net-
work for robust facial landmark localisation. In: CVPR
Workshop. (2017) 2025–2033

[16] Newell, A., Yang, K., Deng, J.: Stacked hourglass net-
works for human pose estimation. In: ECCV. (2016)
483–499

[17] Jaderberg, M., Simonyan, K., Zisserman, A.,
Kavukcuoglu, K.: Spatial transformer networks.
In: NIPS. (2015) 2017–2025

[18] Dai, J., Qi, H., Xiong, Y., Li, Y., Zhang, G., Hu, H.,
Wei, Y.: Deformable convolutional networks. In: ICCV.
(2017) 764–773

[19] : 300 faces in-the-wild challenge. http://ibug.
doc.ic.ac.uk/resources/300-W/

[20] Belhumeur, P.N., Jacobs, D.W., Kriegman, D.J., Kumar,
N.: Localizing parts of faces using a consensus of ex-
emplars. In: CVPR. (2011) 545–552

[21] Le, V., Brandt, J., Lin, Z., Bourdev, L.D., Huang, T.S.:
Interactive facial feature localization. In: ECCV. (2012)
679–692

[22] Messer, K., Matas, J., Kittler, J., Luettin, J., Maitre, G.:
Xm2vtsdb: The extended m2vts database. AVBPA 964
(1999) 965–966

[23] Sagonas, C., Tzimiropoulos, G., Zafeiriou, S., Pantic,
M.: 300 faces in-the-wild challenge: The first facial
landmark localization challenge. In: ICCVW. (2013)

[24] Burgos-Artizzu, X.P., Perona, P., Dollár, P.: Robust face
landmark estimation under occlusion. In: ICCV. (2013)
1513–1520

[25] Asthana, A., Zafeiriou, S., Cheng, S., Pantic, M.:
Robust discriminative response map fitting with con-
strained local models. In: CVPR. (2013) 3444–3451

[26] Zhang, Z., Luo, P., Loy, C.C., Tang, X.: Learning
deep representation for face alignment with auxiliary at-
tributes. TPAMI 38(5) (2016) 918–930

[27] Xiao, S., Feng, J., Xing, J., Lai, H., Yan, S., Kassim,
A.A.: Robust facial landmark detection via recurrent
attentive-refinement networks. In: ECCV. (2016) 57–72

[28] Liu, H., Lu, J., Feng, J., Zhou, J.: Learning deep
sharable and structural detectors for face alignment. TIP
26(4) (2017) 1666–1678

[29] Lv, J., Shao, X., Xing, J., Cheng, C., Zhou, X.: A deep
regression architecture with two-stage re-initialization
for high performance facial landmark detection. In:
CVPR. (July 2017)

[30] Dong, X., Yu, S.I., Weng, X., Wei, S.E., Yang, Y.,
Sheikh, Y.: Supervision-by-Registration: An unsuper-
vised approach to improve the precision of facial land-
mark detectors. In: CVPR. (2018)

[31] Ghiasi, G., Fowlkes, C.C.: Occlusion coherence: Local-
izing occluded faces with a hierarchical deformable part
model. In: CVPR. (2014) 1899–1906

[32] Yang, H., He, X., Jia, X., Patras, I.: Robust face align-
ment under occlusion via regional predictive power es-
timation. TIP 24(8) (2015) 2393–2403




