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Part 1: Introduction



Why Understanding Human Faces

Biometrics (visual authorization and identification)
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Face Analysis Tasks
* Face Detection (control/surveillance)




Face (Attribute) Analysis Tasks

e Expression Analysis (human-computer interaction)




Face (Attribute) Analysis Tasks

Facial age estimation (visual advertisement)
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Face Analysis Tasks

* Face Reconstruction * Face Editing
(visual animation) (visual entertainment)




Face Recognition

Face identification (1 : n)

e o

Face ver|f|cat|on (1:1)




Face Analysis Pipeline

* Face Detection

* Face Alignment

* Face Feature Extraction

* Face Analysis (e.g. Face Recognition)

* expression recognition
* pose estimation
 reconstruction 10



Face Recognition Pipeline

* Face Detection

e Face Alignment (Facial Landmark Localization)
* Face Feature Extraction

* Face Recognition
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Face Alignment Face Recognition
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Challenges

O Face Alignment

Lightness\low-resolution
Large poses

Facial expressions

Partial occlusions

Face changes/ motion

Partial Occlusions
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Challenges

O Face Recognition
 High-dimensional data

e Deteriorate the performances of classifiers

e High computational complexity
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Challenges

O Face Recognition
e Large intra-class variances
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Conventional Solutions

Feature Extraction
e LBP/TPLBP/FPLBP/CSLBP

e Gabor/LGBP/HGPP

HOG
SIFT
POEM
LE

Model Learning

Support Vector Machine
Manifold Learning
Metric Learning

Active Learning
Random Forests

Neural Networks

Cascade Regression
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Feature Representation for Classification

bicycle?

* Complex Mapping
* Designed by prior
* Learned by data

linear predictor
F(x) = (w,x)
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Designed / Learnable Feature Representation

Hand-Designed Representation (Rule-based)
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Designed Feature Adaboost, :
— Tiger
(SIFT, HOG, etc) SVM, etc.

Learnable |
Features

SVM or Ticer
End-to-End &
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Jointly optimize representation learning and classification/regression
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Representations Matter

Robust, compact and informative representation.
e Hand-crafted
* Learning based

Hand-crafted Learning based

e LBP/TPLBP/FPLBP/CSLBP e Eigenface/Fisherface

e Gabor/LGBP/HGPP e LE
e HOG e CBFD/CA-LBFL/SLBFLE
o SIFT e CNN

e POEM * GAN
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Part 2: Representation Learning
for Face Alignment



Face Alignment in a Nutshell

* Input: Image pixels

Shape
Prior. e g e .

e Qutput: Facial landmarks
* Point distribution model

S = [p1,p2, -~ 01, ,pr] € R*
* Objective:

J=|S -5
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Existing Works

* Model-based Optimization e« Cascaded Shape Regression
* shape refinement

* shape-index features

e cascaded/coarse-to-fine

 PCA shape model
* holistic and local appearance

* active shape and appearance
fitting

&)

9. ‘. .o.'... .
‘ e o :’E‘-:D .

ASM [Coots et al., CVIU 1995] e ESR, [Caoetal., CVPR2012]
AAM [Coots et al., PAMI 2004] « SDM, [Xiong et al., CVPR 2013]
CLM [Coots et al.,, BMVC 2006]  CFSS, [Zhu et al., CVPR 2015]

21



Key Points for Alighment Representation

 Hand-crafted Representation
v' HOG, SIFT, geometric-based (2D-3D projection)

e Shape-informative Representation
v’ Local and global = Structural Learning
v'Robustness = Hierarchical Learning

 Knowledge-sharable Representation
v’ Correlated Attributes = Multi-task Learning
v'Video-based = Spatial-temporal modeling
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2.1 Hand-Crafted Representation



2D Hand-Crafted Representation

e Supervised Descent Model

* texture-based representatior
(SIFT, HOG, etc.)

e cascaded linear regression

[Xiong et al., CVPR’13]



2D Hand-Crafted Representation

Performance degrades largely for large-pose
faces!!!

e Solution
* Introduce 3D geometric information
* Preserve spatial structure

25



2D-3D Hand-Crafted Representation

e Basic ldea

— 3D surface (geometric)
— 2D-3D projection

3D Morphable Model

[Liu et al., CVPR’16]
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2D-3D Hand-Crafted Representation

e Basic ldea

* |arge-pose faces
* profile (self-occlusion)
e Solution: 3D fitting

[Liu et al., CVPR’16]

The result of the proposed method across stages, with the extracted features (1st row) and alighment
results (2nd row). 27



Limitations of Hand-Crafted Representation

e Require strong prior knowledge
e May not work in Domain Adaptation

e Separated learning leads to local optima



2.2 Hierarchical Representation Learning



Hierarchical Representation: Deeply

Learned Features

* Visual Recognition
* pixel>edge—>texture—>pattern->component—>object

semantic and meaningful> Deep

Low Mid }[ High }[Classlflcatlon]
LeveI Level Level
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Hierarchical Representation: Deeply

Learned Features

* Visual Recognition
* pixel>edge—>texture—>pattern->component—>object

semantic and meaningful> Deep
Low Mid ]{ High Classification
Level Level Level

e Text Classification

* character->>word—2>word group—>clause—2>sentense—>story
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Learning Hierarchical Representation by
Facial Landmarks Partition

————————————————————
Initial
Prediction

I . | I
; Bounding Box I
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| Estimation

Component
Refinement

Input Output

Level 3
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h

[Zhou et al., ICCVW’13]
* Basic ldea

* Face partition based on different facial components

* Learning local features hierarchically by a set of CNNs
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Learning Hierarchical Representation by
Convolutional Networks

Level 1 Level 2 Level 3

le3 1
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[Sun et al., CVPR’13]

e Levell e level2 &3 e Limitations

* image->landmark * landmark update e Correlation of landmarks
* rough prediction * Coarse-to-fine and neighbors

* Global shape constraint
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Learning Hierarchical Representation by
Auto-Encoder Networks

Shape Initialization
* image->landmark
* rough prediction
Shape Refinement
e landmark update
e Coarse-to-fine
* Representation

e Shape-index patches
* Raw pixel input

NI
N»‘J{*({
\

7/1'0*\

shape-index
P Auto-encoder only for

patch . e Mo _ye
Resslution parameter initialization
Low of deep neural networks!
[Zhang et al., ECCV’14] (Use CNN instead)
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Learning Hierarchical Representation by
Feedback Neural Networks

| Pparameters
| >

| memorize
| descents

[Trigeorgis et al., CVPR’16]



Learning Hierarchical Representation by
Feedback Neural Networks

o=0 ERT SOM Q.Q Intraface
o0 O Mom
o.o Chehra gl PO-CR <= CFSS

X e ; | i L
0.00 001 002 0.03 004 005 006 0.07 0.08
Normalised Point-to-Point Error on 49 points

Figure 6: Results on the full testing set of the 300W com-
petition, which was used as a validation set (49-points).

o _ [Trigeorgis et al., CVPR’16]
* A t-SNE depiction of the internal states (T =1)

Each color corresponds to a cluster of head pose.

MDM learn to partition the input data based on
the head pose.
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Improvements

e Explicit shape-index local features
* Coarse-to-fine facial shape constraint

e Correlation of neighbouring landmarks



2.3 Structural Representation Learning



Shape-Index Representation

* Motivation
— Exploit shape-sensitive structure (local and global)

* Explicit shape-index local feature

Benefit from the
spatial locality.

PC coefficients exploit

different facial components s

[Cao et al., CVPR'12] 39



Local Binary Representation

Framework
’ __________ | \
O Estimated Shape §*~* { Learning Feature Local Binary Learning Linear O Estimated Shape S*
© Ground Truth Shape $ Mapping ®* Features | Projection Wt © Ground Truth Shape $

[Ren et al., CVPR’14]
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Local Binary Representation

Shape-index feature = local binary feature

concatenating

1 -

i

l [010...0...100...1] |

o
Y

[1000/0100/0010]..]

[Ren et al., CVPR’14]
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Structural Learning by Coarse-to-Fine
Shape Searching

PR
Stage 1 =

given PR,

AN
\\
i R
estimate P*_;, - ;
H / \
1 \
R

estimate X5
Stage 2

given PR,
estimate f(,=z)/

estimate PR 2,

Stage 3

given PR,

estimate X3,

Decision on sub-region center X,
¥ Ground truth location x*

' Shape space region visualized in 2D

(a) Sub-region searching

. j; Candidate shape

Mean shape

(c) Steps of cascaded regression (baseline)

[Zhu et al., CVPR’15]
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Structural Learning by Coarse-to-Fine
Shape Searching

e Start from multiple shape initialization
Narrow down sub-regions for facial shape refinement
Remove outlier shape candidates

[Zhu et al., CVPR’15]
43




Structural Representation by Cascade
Compositional Learning

(a) General Cascaded Regression (b) Multi-view Approach (c) Proposed Compositional Shape Low
s g, & o e ~ IR - Error
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[Zhu et al., CVPR’16] 44



Learning Structural Representation for
Robust Face Alighment

Real-world conditions present large
variations in use of accessories such as
sunglasses and hats and interactions with
objects (e.g. food).

Face Partition

 Deformable Part-
based Model

* Infer occluded part
via non-occluded
part

[Burgos-Artizzu et al., ICCV’13]



Learning Structural Representation for
Robust Face Alighment

[Zhang et al., CVPR’16]

Main ldea:
e Use auto-encoder network to recover the occluded-part
* Face alignment performs on the recovered face cascaded

46



Learning Deep Structural Representation

Motivation
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Structural learning from

Semantic Facial Parts neighbouring landmarks

Hao Liu, Jiwen Lu, jianjiang feng and Jie Zhou, Learning deep sharable and structural detectors for face 47
alignment, |EEE Transactions on Image Processing (T-1P), 26(4):1666-1678, 2017.



Learning Deep Structural Representation

Basic Idea:
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Hao Liu, Jiwen Lu, jianjiang feng and Jie Zhou, Learning deep sharable and structural detectors for face 48

alignment, |EEE Transactions on Image Processing (T-1P), 26(4):1666-1678, 2017.



Experiments on Benchmark

Robustness to various poses

Method LFPW 68-pts  HELEN 68-pts  HELEN 192-pts  Common Set 68-pts  Challenging Set 68-pts  Full Set 68-pts
FPLL 8.29 8.16 - 8.22 18.33 10.20
DRMF 6.57 6.70 - 6.65 19.79 922
RCPR 6.56 5.93 6.50 6.18 17.26 8.35
GN-DPM 5.92 5.69 - 5.78 - -
SDM 5.67 5.50 5.85 5.57 15.40 7.50
CFAN 5.44 5.53 - 5.50 - -
ERT - - 4.90 - - 6.40
BPCPR - - - 5.24 16.56 7.46
ESR - - 5.70 5.28 17.00 7.58
LBF - - 5.41 4.95 11.98 6.32
LBF fast - - 5.80 5.38 15.50 7.37
Deep Reg - - - 451 13.80 6.31
CFSS 4.87 4.63 4.74 4.73 9.98 5.76
CFSS Practucal 4.90 4.72 4.84 4.73 10.92 5.99
TCDCN 4.57 4.60 4.63 4.80 8.60 5.54
DCRFA 4.57 4.25 - 4.19 8.42 5.02
R-DSSD* 4.77 4.31 4.95 4.57 10.86 5.91
R-DSSD 4.52 4.08 4.62 4.16 9.20 5.59
Hao Liu, Jiwen Lu, jianjiang feng and Jie Zhou, Learning deep sharable and structural detectors for face 49

alignment, |EEE Transactions on Image Processing (T-1P), 26(4):1666-1678, 2017.



Evaluation on Landmark Density

Robustness to density, expressions and poses

IBUG 68-pts

Hao Liu, Jiwen Lu, jianjiang feng and Jie Zhou, Learning deep sharable and structural detectors for face 50
alignment, |EEE Transactions on Image Processing (T-1P), 26(4):1666-1678, 2017.



2.4 Multi-Task Representation Learning



Motivation

 Facial landmarks are correlated with facial
expression, facial 3D pose and partial
occlusion

* Sharing knowledge in representation
learning with multiple related tasks



Face Detection and Alighment
* The main goal of multi-task learning

111111 ZZE (s, (W)X 4 b)) + A[W]|2,1.

i=1 3=1

where x denotes training samples and y specifies
each sample’s label for each task.

* Multi-task learning for face detection and alignment

[Chen et al., ECCV’14] 53



Learning Multi-Task Representation with
Auxiliary Facial Tasks

* Face alignment by auxiliary tasks

wearing not wearing
glasses glasses

pose smiling not smiling

CNN

|
I
I TCDCN
I
| o
12
= }
I_-g Wearing glasses *
:g smiling x \ x x
I ;‘ gender female male female female
1=
13 pose right profile frontal frontal left
I e e e e e e e e e s e e e e e o e e e
(a) (b)

Auxiliary Attributes: Gender. Expressions. Pose. Wearing Glasses

[Zhang et al., PAMI’16] 54



Learning Multi-Task Representation with
Auxiliary Facial Tasks

* The first row-face images/ the second row-corresponding features

* The face images with similar poses and attributes are close with
each other.

* Learned feature space is robust to pose, expression, and occlusion.

[Zhang et al., PAMI’16] 55



Learning Multi-Task Representation with
3D Surface Reconstruction

e Joint face alignment and 3D face reconstruction
e 2D landmark contributes to 3D surface reconstruction

Neutral / Frontal Happy / Frontal Happy / Left Yaw (30°)

Joint Face Alignment and ~ Conventional
3D Face Reconstruction Face Alignment

[Liu et al., ECCV’16]
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Learning Multi-Task Representation with
3D Surface Reconstruction

< L
-
B

2.4x2.1% '42:L-37°/ 3.3+£3.6% 3I:I:32/ 27:!:25”/ 2.9+3.1% 3.5£3.1%

5

[Liu et al., ECCV’16]
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Learning Multi-Task Representation with
Pose/Deformation/Occlusion

* Coupling tasks for face alignment

Image Appearance

l

Landmark occlusion
probability
s

. Head pose :
Vision model, P , 2d facial landmark
deformable — o locations
model Non-rigid :
Model based pose deformation

and deformation
estimation

[Wu et al., CVPR’17]

58



Performance effects of multi-task learning

Table 1. Comparison of the head pose estimation methods (mean

absolute errors) on BU database.

Method Pitch  Yaw Roll Average
Rigid model [ 1] 11.9 52 2.8 6.0
Cylindrical [15] 6.6 33 98 6.4
Cylindrical+ AAM [20)] 5.6 54 3l 4.7
Deformable model [24] 4.3 6.2 3.2 4.6
3D CLM [ 7] 6.0 39 3.7 4.5
ours 3.3 4.9 3.1 4.4

Table 5. Comparison of landmark detection (average pixel errors) on MultiPIE database (51 points).

near-frontal all poses
CLM [1%] FPLL[:!] Pose-free[2%] Deep3D|[3i0] 3DCLM|[2] Chehra[l] ours Ours
475 4.39 7.34 5.74 5.30 4.09 3.51 3.50

[Wu et al., CVPR’17]



Performance effects of multi-task learning

Table 2. Comparison of facial landmark detection errors (normal-
ized errors w.rt. inter-ocular distance) and occlusion prediction
results on COFW database (29 points) [ ],

Method Landmark error Occlusion
(precision/recall)

Human 5.6(7]

CRC [¥] 7.30 -

OC Y] 7.46 80.8/37.0%

RCPR [ 7] 8.50 S0/40%

ESR [1] 11.20

FPLL [*1] 14.40

SDM [76] 7.70

ours 6.40 80/44.43%

[Wu et al., CVPR’17]
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2.5 Spatial-Temporal Representation
Learning



Video-based Face Alignment

Time-Stamps

* Problem Setting
* Input: facesequence x {x},fg,...,xgj...,xg"}
e Output: landmarks for t-th frame P: = 1, P2y P DL
- Goal: sequential face alignment {x'}'="" — {p'}'"™*

1.7 __
; —

t!
1
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Learning Temporal Representation for
Video-based Face Alighment

e Challenges for Video-based Face Alignment
* Consistency over time steps
* Robustness to initialization of both spatial and temporal
dimension

P tal., ICCV'16
[Peng et a ]63



Learning Spatial-Temporal Representation
for Video-based Face Alignment

Detection

Initialization

AN

Initializations

Tracking _J

/ Initializations | |

e R ——

—

init(i) |

MW init(i+1)

Subproblem 1

Subproblem 2

Subproblem i

»| Subproblem i+1

[Khan et al., ICCV’17]
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Learning Spatial-Temporal Representation
for Video-based Face Alignment

300 VW. Category C

—

] =) ow
T T

o

—DGCM-Conv |
— Detector-Conv .
—Tracker-Conv 1 Performance benefits

--DGCM-SIFT ' from both detection
- ~Detector-SIFT

- -Tracker-SIFT || and tracking!

Em 0.02 03 ) 0.05 0.06 0.07
ormalized Pt-Pt error

Figure 3. Comparison between DGCM with Detection (alone) and
Tracking (alone) on category C of 300-VW.

S
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= o= =] - =
L on

=1
~

[Khan et al., ICCV’17]
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Two-Stream Transformer Networks for
Video-based Face Alighment

* Basic ldea
 Complementary information of both streams
e Spatial stream: spatial appearance in still images
* Temporal stream: consistency across frames
N T
L 1
¢ ObJECtIVE: mfinJ = Z EHAPE — B fspat (XE) — B2 ftemp (X:) Hz:
t

subject to 1+ 2 = 1.

————————————————————————————————————————————————————————————————————

Sampler

p

t-1

Single Frame

____________________________________________________________________

———————————————————————————————————————————————————————————————————

sdwejs-awi |

Temporal Stream

A

4
]
1
1
1
t
! Two-Layer — APtempi
: ﬁ Yy 5 pt1 G
| RNN [ i
| |
: Active Appearance Codes :
. 1 1
Video lnpUt |‘ Consecutive Frames I
\ Encoder Decoder ,’

___________________________________________________________________
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Hao Liu, Jiwen Lu, jianjiang feng and Jie Zhou, Two-Stream Transformer Networks for Video-based Face
Alignment. IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI), 2017, in Press



Spatial Stream

Eromed 1\
# Aé't ~@

Shape update
]
Shape-index _ _
Sampler Convolutional Regression
Hao Liu, Jiwen Lu, jianjiang feng and Jie Zhou, Two-Stream Transformer Networks for Video-based Face 67

Alignment. IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI),, 2017, in Press



Temporal Stream

Sampler

Two-Layer
RNN

o e e e o
R ———

active
appearance
codes

video clip

xt-1 . xt+1

Hao Liu, Jiwen Lu, jianjiang feng and Jie Zhou, Two-Stream Transformer Networks for Video-based Face 68
Alignment. IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI), , 2017, in Press



Quantitative Evaluation

| Methods | Model Description | Category 1 | Category 2 | Category 3 | Challset [25] | -pts | Year |
SDM [46] Cascaded Linear Regression 7.41 6.18 13.04 7.44 2013
TSCN [35]* Two-Stream Action Network 11.61 11.59 17.67 - 2014
TSCN [35]%+2 Two-Stream Action Network 12.54 7.25 13.13 - 2014
CFSS [50] Coarse-to-Fine Shape Searching 7.68 6.42 13.67 5.92 68 | 2015
PIEFA [26] Personalized Ensemble Learning - - - 6.37 2015
REDN [25] Recurrent Auto-Encoder Net - - - 6.25 2016
TCDCN [49] Multi-Task Deep CNN 7.66 6.77 1498 7.27 2016
TSTN Two-Stream Transformer Net 5.36 4.51 12.84 5.59 -
CCR [32]” Cascaded Continuous Regression 7.26 5.89 15.74 - 2016
iCCR [32]* Cascaded Continuous Regression 6.71 4.00 12.75 - 66 | 2016
TSTN Two-Stream Transformer Net 5.21 423 10.11 - -
1 T T 1 T T 1 T i
09 H 3 T cene 2 QT i e W e
0.8 | —=—ICCR-66pts 1 0.8 |—=—IiCCR-66pts 0.8 | —=—ICCR-66pts
————— CCR-B6pts <. CCR-66pts -~ CCR-B6pts
07y CFSS-68pts 07r CFSS-68pts 07 CFSS-68pts
0.6 L| —=—TCDCN-88pts | ogl|—=—TcDcn-8pts L 0.6 L | —=—Tcoen-gapts
==-=SDM-G8pts | B S5 £ | | |=— SDM-68pts . === SDM-68pts
0.5F| - - -TSCN-68pts 1 0.5F|---TSCN-88pls )’ 05F|- - =-TSCN-68pts
04t 0.4 of 04}
03} -9 03 03}
02F ’,,-' ‘ 02 02f &
01t e 01 0.1 , ) L
oot 003 0.04 i 005 006 007 008 0 001 002 - 003 004 005 006 007 008 0 001 002 003 004 005 008 007
Category One Category Two Category Three

Hao Liu, Jiwen Lu, jianjiang feng and Jie Zhou, Two-Stream Transformer Networks for Video-based Face
Alignment. IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI), , 2017, in Press
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Qualitative Evaluation

Drifting

Hao Liu, Jiwen Lu, jianjiang feng and Jie Zhou, Two-Stream Transformer Networks for Video-based Face 70
Alignment. IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI), , 2017, in Press



Robustness to Temporal Occlusions

I v ‘rnv’ ABIBRE V

Contlnuous OchuS|on across the Video Clip

ARRRERBBEREE

Discontinuous Occlusion across the Video Clip

1

----- SDM(discontinuous)

s TSTN(discontinuous )
10 - SDM(continuous| )

mm TS TN(continuous )

averaged error

0 0.1 0.2 0.3 04 0.5 0.6
occlusion ratio

Hao Liu, Jiwen Lu, jianjiang feng and Jie Zhou, Two-Stream Transformer Networks for Video-based Face 71
Alignment. IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI), , 2017, in Press



Summary

pudie”
[ Shape Structure RepresentationNW[ Multi-Task ]

Learning for
o V.
[ Hierarchical Learning Face Allgnment) 'deq Spatial-Temporal ]

e Shape Structure

e correlation for
neighboring landmarks
(locality)

* holistic shape constraint

Structural
Representation

Local Patches

Designed
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Summary

[ Shape Structure

Representation
Learning for
. I/
Face Alignment y Ideg

[ Hierarchical Learning

* Hierarchical Learning
* nonlinear relationship
* end-to-end optimization

Global Appearance

M)(\\\aN
Ny‘es[ Multi-Task ]
AXL \

Spatial-Temporal ]

Local Patches

Hierarchical
Representation

73




Summary

P\m(\\‘\aN
[ Shape Structure RepresentationNW[ Multi-Task ]

Learning for
Face Alignment | Vg2

[ Hierarchical Learning Spatial-Temporal ]

e Spatial-Temporal
* spatial appearance
e temporal consistency

Spatial Temporal Spatial-Temporal
Representation Representation Representation
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Summary

P\u}(\\.\a(\,
[ Shape Structure Representation \W[ Multi-Task ]
Learning for
. I/
[ Hierarchical Learning Face AllgnmentJN Spatial-Temporal ]

* Shape Structure e Spatial-Temporal

* correlation for neighboring i :
landmarks (locality) spatial appearance

* holistic shape constraint * temporal consistency
* Hierarchical Learning e Multi-Task

* nonlinear relationship

* end-to-end optimization

e Learning with correlated
tasks (facial attributes)

* shared representation

75
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Outline

e Part 1: Introduction

e Part 2: Representation Learning for Face Alignment

e Part 3: Representation Learning for Face Recognition

e Part 4: Discussions
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Part 3: Representation Learning
for Face Recognition



Applications of Face Recognition

* Information security * Law enforcement
e Access security * Video surveillance
e Data privacy * Suspect identification
e User authentication * Suspect tracking

* Forensic reconstruction
e Access management

* Secure access authentication * Personal security
* Permission based systems  Home video surveillance

. Biometrics Expression interpretation

* Person identification * Entertainment
 Automated identity verification
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History of Face Recognition
N

1950 — Psychology




History of Face Recognition

AN

1960 —

1950 —

Woodrow Wilson Bledsoe RAND TABLET

Man-machine facial recognition
(record the coordinate locations of facial features)

Psychology

82



History of Face Recognition

) KURENAI i - K

3§28 DEFENSE TECHNICAL INFORMATION CENTER (o Uty e etk KYOTO UNIVERSITY
“, 4
o
e Picture Processing System by Computer Complex and
Recognition of Human Faces( Abstract_ )
u Select Search v | Keywords n
Advanced Search
Accession Number : AD0713252 Author(s) Kanade, Takeo

Title: VISUAL IDENTIFICATION OF PEOPLE BY COMPUTER.

Descriptive Note : Doctoral thesis, Citation KyOtO University ( )

Corporate Author : STANFORD UNIV CALIF DEPT OF COMPUTER SCIENCE

Issue Date | 1974-05-23
Personal Author(s) : Kelly,Michael David

Report Date : AUG 1970 URL | https:/doi.org/10.14989/doctor k1486

Pagination or Media Count : 249

Abstract : The thesis describes a computer program which performs a complex picture processing task. The task is to choose, from a Right
collection of pictures of people taken by a TV camera, those pictures that depict the same person. The primary purpose of this research
has been directed toward the development of new techniques for picture processing. (Author)

Descriptors : (*HUMANS, IDENTIFICATION), (“ARTIFICIAL INTELLIGENCE, PATTERN RECOGNITION), (*PICTURES, PROCESSING), Type Thesis or Dissertation
COMPUTER PROGRAMMING, SELECTION, MATHEMATICAL MODELS, ANATOMICAL MODELS, OPTICAL SCANNING, THESES

Subject Categories : COMPUTER PROGRAMMING AND SOFTWARE :
PRINTING AND GRAPHIC ARTS Textversion | author
BIONICS

1970 — Geometric parameters
(distances and angles between landmarks, without human intervention)

1960 — Man-machine facial recognition

1950 — Psychology
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History of Face Recognition

FAN Low-dimensional procedure for the characterization of
human faces

L. Sirovich and M. Kirby

Division of Applied Mathemetics, Brown University, Providence, Rhode Island 02912

Received August 25, 1986; accepted November 10, 1986

A method is presented for the representation of (pictures of) faces. Within a specified framework the representa-
tionisideal. This resultsin the characterization of a face, to within an error bound, by a relatively low-dimensional
vector. The method is illustrated in detail by the use of an ensemble of pictures taken for this purpose.

1980 — Geometric measurement, PCA, ANN
(the first mention to eigenfaces and “deep” faces)
1970 — Geometric parameters
1960 — Man-machine facial recognition
1950 — Psychology
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History of Face Recognition

N\

1980 —

1970 —

1960 —

1950 —

426

PRACTICAL FACE RECOGNITION AND VERIFICATION WITH WISARD.

T. J. STONHAM

1. INTRODUCTION
WISARD (Wllkle, Aleksander, and Stonham s Recognition Device) is a

general purpose pattern recognition machine with a special semi-parallel
structure unlike that of conventional single instruction single data
computers. The machine is self-adapting. It does not require

Geometric measurement, PCA, ANN
(the first mention to eigenfaces and “deep” faces)

Geometric parameters

Man-machine facial recognition

Psychology
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History of Face Recognition

N\

1990 —
1980 —
1970 —
1960 —

1950 —

Eigenfaces, 19

Holistic subspace learning, graph matching
(Eigenfaces, Fisherfaces)

Geometric measurement, PCA, ANN

Geometric parameters AW 5 |
Fisherfaces, 1997

Man-machine facial recognition

Psychology
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History of Face Recognition

N\

1990 —
1980 —
1970 —
1960 —

1950 —

AN

Holistic subspace learning, graph matching MIT, UMIST, Yale,

(Eigenfaces, Fisherfaces)

Geometric measurement, PCA, ANN

Geometric parameters

Man-machine facial recognition

Psychology

AT&T, AR (~10-120)

Kanade (20)

(number of identities) 87



History of Face Recognition

N\

2000 —
1990 —
1980 —
1970 —
1960 —

1950 —

Hand-crafted features
(Gabor, LBP, SIFT, HOG; Laplacianfaces)

Holistic subspace learning, graph matching

Geometric measurement, PCA, ANN

Geometric parameters

Man-machine facial recognition

Psychology

AN

FERET, LFW, YTC, PaSC,
Caltech (~100-10K)

MIT, UMIST, Yale,
AT&T, AR (~10-120)

Kanade (20)

(number of identities) 88



History of Face Recognition
N N

YTF , Multi-PIE, 1IB-A,

2010 — Local feature learning, deep learning CASIA, VGG, MS-Celeb,
(LE, CBFD, CNN) Megaface (~300-600K)

2000 — Hand-crafted features FERET, LFW, YTC, PaSC,
Caltech (~100-10K)

1990 — Holistic subspace learning, graph matching MIT, UMIST, Yale,
AT&T, AR (~10-120)

1980 — Geometric measurement, PCA, ANN

1970 — Geometric parameters Kanade (20)

1960 — Man-machine facial recognition

1950 — Psychology

(number of identities) 89



History of Face Recognition
N N

YTF , Multi-PIE, 1IB-A,

2010 — Local feature learning, deep learning CASIA, VGG, MS-Celeb,
Megaface (~300-600K)

2000 — Hand-crafted features FERET, LFW, YTC, PaSC,
Caltech (~100-10K)

1990 — Holistic subspace learning, graph matching MIT, UMIST, Yale,
AT&T, AR (~10-120)

1980 — Geometric measurement, PCA, ANN

1970 — Geometric parameters Kanade (20)

1960 — Man-machine facial recognition

1950 — Psychology

(number of identities) 90



History of Face Recognition

N\

2010 —
2000 —
1990 —
1980 —
1970 —
1960 —

1950 —

Local feature learning, deep learning e Deep Learning

Hand-crafted features e Local Features

o , _ e Learning-based
Holistic subspace learning, graph matching

e Hand-crafted

Geometric measurement, PCA, ANN o
e Holistic Subspace

Geometric parameters e Geomet ry

Man-machine facial recognition

Psychology
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History of Face Recognition

N\

2010 —
2000 —
1990 —
1980 —
1970 —
1960 —

1950 —

Local feature learning, deep learning e Deep Learning

Hand-crafted features e Local Features

o , _ e Learning-based
Holistic subspace learning, graph matching

e Hand-crafted

Geometric measurement, PCA, ANN o
e Holistic Subspace

Geometric parameters e Geomet ry

Man-machine facial recognition

Psychology
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History of Face Recognition

N\

2010 —
2000 —
1990 —
1980 —
1970 —
1960 —

1950 —

Local feature learning, deep learning e Deep Learning

Hand-crafted features e Local Features

o _ _ e Learning-based
Holistic subspace learning, graph matching

e Hand-crafted

Geometric measurement, PCA, ANN o
e Holistic Subspace

Geometric parameters e Geomet ry

Man-machine facial recognition

Psychology
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History of Face Recognition

N\

2010 —
2000 —
1990 —
1980 —
1970 —
1960 —

1950 —

Local feature learning, deep learning e Deep Learning

Hand-crafted features e Local Features

o , _ e Learning-based
Holistic subspace learning, graph matching

e Hand-crafted

Geometric measurement, PCA, ANN o
e Holistic Subspace

Geometric parameters e Geomet ry

Man-machine facial recognition

Psychology
94



History of Face Recognition

N\

2010 —
2000 —
1990 —
1980 —
1970 —
1960 —

1950 —

Local feature learning, deep learning e Deep Learning

Hand-crafted features e Local Features

o _ _ e Learning-based
Holistic subspace learning, graph matching

e Hand-crafted

Geometric measurement, PCA, ANN o
e Holistic Subspace

Geometric parameters e Geomet ry

Man-machine facial recognition

Psychology
95



History of Face Recognition

N\

2010 —
2000 —
1990 —
1980 —
1970 —
1960 —

1950 —

Local feature learning, deep learning e Deep Learning

Hand-crafted features e Local Features

o _ _ e Learning-based
Holistic subspace learning, graph matching

e Hand-crafted

Geometric measurement, PCA, ANN o
e Holistic Subspace

Geometric parameters e Geomet ry

Man-machine facial recognition

Psychology
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History of Face Recognition

N\

Deep Learning

Local Features

e Learning-based

e Hand-crafted

Holistic Subspace

Geometry

Representation

Learning
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3.1 Holistic Representation Learning



Eigenfaces
Based on PCA

e A face space best encodes
the variation

e The face space is spanned facespace 3

u2
by eigenfaces \N /

e The weights form a vector
that describe the
contribution of each
eigenface in representing
the input face image

[Turk and Pentland, CVPR’91] gq



Fisherfaces

Based on Fisher’s Linear Discriminant

e Insensitive to large ' 1 S
variations in lightingand S , -C-;
e /7 PoA
facial expressions | -
£ ;
e Maximizes the ratio of L
between-class scatter to  * “ S |
- *. casiafes /ﬁ ..O. ‘o0
that of within-class S|
K|, :
0 7
scatter /"/ %Qb\ o class 1
. %\ - + class?2
0 i >
feature 1

[Belhumeur et al., TPAMI'97] 19



Laplacianfaces
Based on Locality Preserving Projections

e LPP finds an embedding that preserves local
information

(c)
(a) Eigenfaces (b) Fisherfaces (c) Laplacianfaces [He et al,, TPAMI’OS]lOl



3.2 Hand-crafted Representation



Gabor Wavelet Representation
Gabor-Fisher Classifier (GFC)

e Augmented Gabor feature ..-.....
vector ...-.
e Gabor-Fisher classifier for -.
multi-class classification %H
: N R W/ :
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Local Binary Pattern

LBP
e Varying scales

e Uniform patterns

85|99 leh_l hold 1|10
_ <500 Binary: 11001011
=54 541 86 L L Decimal: 203
57112 13 1100
., A

[Ojala et al., TPAMI‘02; Ahonen et al., TPAMI'06] 104



3.3 Local Representation Learning



Learning-based Descriptor
LE

e Learning to encode the local microstructures of the face
into a set of discrete codes in an unsupervised manner

r-""""""">">-""-">"-"~"-"~"-"~-"-"-"-"-~"-"- -~ -=-~="-=»-~= -~ -~"~-~ -~ -"==-—-"=-—-="-"=-"=-"=-"=-—-”\/=—”/”W/ /- =” |
I
| — . PCA and |
| / \ d d'!2 - d rmalization |

‘ d, d,,~d \
() e R
| // o

R
| ? d,d,d :
|
| Preprocessed Sampling and Normalized low-level Concatenated LE descriptor |
| image normalization feature vectors patch histogram \
_________________________________________
Pose
evaluation

X nose -
DoG —» | descriptor 2 Pose-adaptive -
extractor : | Classifier | > verificaton

LE descriptor Component Component Pose-adaptive
extraction representaion similarity vector face similarity

[Cao et al., CVPR'10]4 o6




Local Binary Representation Learning

Motivation

e Local Binary Pattern:
Local Patch = Threshold = Local Binary Representation

85| 09 lel Hold 1/1]0
- wresholc Binary: 11001011
=| 54| 54| 86 1 1| Decimal: 203
57/ 12| 13 Lrjojoj

e Local Binary Representation Learning:
Local Patch = Mapping =2 Local Binary Representation

From hand-crafted pattern designing to data-dependent representation

learning.
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Local Binary Representation Learning

Basic idea: Learn a projection matrix to map local patches
to binary features.

___________________________________________________________________________________________________________

Training

1
0
CBFD ||| Clustering
1
1
0

[O’\II-‘ONNG&DI—'LL’VI

. ; Compact
. PDV Binary Code
Training |
images £ ;
g bt COdEbOOk :::::::::::::::::::::::::::::::j‘
=2 %
0 ‘ i
1 i
v+ 1 > %
3 i
: 1
' i
Compact Histogram 1
Binary Code Representation

____________________________________________________________________________________________________________

Jiwen Lu, Venice Erin Liong, Xiuzhuang Zhou, and Jie Zhou, Learning Compact Binary Face Descriptor for Face 108
Recognition, IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), vol. 37, no. 10, pp. 2041-
2056, 2015.



Local Binary Representation Learning
Compact Binary Face Descriptor (CBFD)

min.J (wg) = Ji(wg) + M Jo(wr) + Ao J3(wy)

Wi
1001000 —;\ll),,k—mw
1110003] 4y 5 b 05) — uial?
0110100 .
+)\2H Z(b”k — ()'—))H.2

n=1

Jiwen Lu, Venice Erin Liong, Xiuzhuang Zhou, and Jie Zhou, Learning Compact Binary Face Descriptor for Face
Recognition, IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), vol. 37, no. 10, pp. 2041-
2056, 2015.
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Local Binary Representation Learning

Face Representation

CBFD
W, Codebook

: }
Kol

(o]

a

Classifier
h

>

ko \J

©

(G

110

Jiwen Lu, Venice Erin Liong, Xiuzhuang Zhou, and Jie Zhou, Learning Compact Binary Face Descriptor for Face
Recognition, IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), vol. 37, no. 10, pp. 2041-

2056, 2015.



Experimental Results

Face Recognition

e Dataset---FERET face database

Jiwen Lu, Venice Erin Liong, Xiuzhuang Zhou, and Jie Zhou, Learning Compact Binary Face Descriptor for Face
Recognition, IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), vol. 37, no. 10, pp. 2041-

2056, 2015.

Method fb fc dupl dup2
LBP [26] 93.0 51.0 61.0 50.0
LBP+WPCA [26] 98.5 84.0 79.4 70.0
LGBP [70] 94.0 97.0 68.0 53.0
LGBP+WPCA [70] 98.1 99.0 83.8 85.0
LVP [41] 97.0 70.0 66.0 50.0
LGT [30] 97.0 90.0 71.0 67.0
HGGP [69] 97.6 98.9 77.7 76.1
HOG [42] 90.0 74.0 54.0 46.6
DT-LBP [39] 99.0 100.0 84.0 80.0
LDP [68] 94.0 83.0 62.0 53.0
GV-LBP-TOP [31] 98.4 99.0 82.0 81.6
DLBP [40] 99.0 9.0 86.0 85.0
GV-LBP [31] 98.1 98.5 80.9 81.2
LQP+WPCA [23] 99.8 94.3 85.5 78.6
POEM [59] 97.0 95.0 77.6 76.2
POEM+WPCA [59] 99.6 99.5 88.8 85.0
s-POEM+WPCA [58] 99.4 100.0 91.7 90.2
DFD [32] 99.2 98.5 85.0 829
DFD+WPCA [32] 99.4 100.0 91.8 92.3
CBFD 98.2 100.0 86.1 85.5
CBFD+WPCA 99.8 100.0 93.5 93.2
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Experimental Results

Face Recognition
e Dataset---LFW face database

Method AUC ‘
LBP [57] 75.47 ' |
SIFT [57] 5407 5 0.8/ —SIFT
LARK [48] 7830 I LARK
LHS [51] 81.07 2 —LHS
PAF [67] 9405 g 0.6 /| —PAF
MRF-MLBP [2] 89.94 & —MRP-MLEBP
CBFD (a) 8232 9 —CBFD (a)
CBFD+WPCA (a) 88.75 = 04/ ~|—CBFD (b)
CBFD+WPCA (b) 88.89 —CBFD (c)
CBFD+WPCA (c) 88.65 ; —CBFD Mean (a,b,c)|
CBFD+WPCA (mean: a, b, ) 90.91 0'20 0.2 0.4 0.6 0.8 1

False Positive Rate

Jiwen Lu, Venice Erin Liong, Xiuzhuang Zhou, and Jie Zhou, Learning Compact Binary Face Descriptor for Face 112
Recognition, IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), vol. 37, no. 10, pp. 2041-

2056, 2015.



Local Binary Representation Learning
Context-Aware Local Binary Feature Learning (CA-LBFL)

e Contextual information is

- My
widely exploited in various !
3 CA-LBFL i Clustering
tasks as prior knowledge :
Training Pi)V (i;i"::f;t-g::;ge
Images

e Learning context-aware

—_—— — ————— —— T — — —

features to enhance the W Godebook |
robustness ; | |
=== =l

; i Histogram
3 L Representation

I_’;V Context-Aware |

10...110 ....00 i

Yueqi Duan, Jiwen Lu, Jianjiang Feng, and Jie Zhou, Context-Aware Local Binary Feature Learning for Face 113
Recognition, IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), vol. 40, no. 5, pp. 1139-
1153, 2018.



Local Binary Representation Learning
Reducing the number of 0/1 shifts

4]3
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Learning: Context-Unaware

Yueqi Duan, Jiwen Lu, Jianjiang Feng, and Jie Zhou, Context-Aware Local Binary Feature Learning for Face
Recognition, IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), vol. 40, no. 5, pp. 1139-
1153, 2018.
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Local Binary Representation Learning
Reducing the number of 0/1 shifts
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Learning: Context-Aware

Yueqi Duan, Jiwen Lu, Jianjiang Feng, and Jie Zhou, Context-Aware Local Binary Feature Learning for Face

Recognition, IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), vol. 40, no. 5, pp. 1139-

1153, 2018.
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Experimental Results

Face Recognition

e Dataset---FERET face database

Yueqi Duan, Jiwen Lu, Jianjiang Feng, and Jie Zhou, Context-Aware Local Binary Feature Learning for Face
Recognition, IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), vol. 40, no. 5, pp. 1139-

1153, 2018.

Method fb fc dupl dup2
LBP [1] 93.0 51.0 61.0 50.0
LGBP [12] 94.0 97.0 68.0 53.0
LGT [6] 97.0 90.0 71.0 67.0
HGGP [11] 97.6 98.9 77.7 76.1
HOG [72] 90.0 74.0 54.0 46.6
LDP [10] 94.0 83.0 62.0 53.0
GV-LBP-TOP [7] 98.4 99.0 82.0 81.6
GV-LBP [7] 98.1 98.5 80.9 81.2
LQP [34] 99.8 94.3 85.5 78.6
POEM [9] 97.0 95.0 77.6 76.2
s-POEM [73] 994 100.0 91.7 90.2
DFD [8] 99.4 100.0 91.8 92.3
CBFD [13] 99.8 100.0 93.5 93.2
CA-LBFL(R=2) 98.5 99.5 91.2 89.3
CA-LBFL (R=3) 99.8 100.0 94.9 94.5
CA-LBFL (R=4) 99.8 100.0 95.2 949
CA-LBMFL (R = 3) 99.8 100.0 95.3 95.3
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Experimental Results

Face Recognition
e Dataset---LFW face database

Method VR AUC
LBP[1] 69.45 75.47

SIFT [16] 64.10 54.07

LARK [56] 72.23 78.30

POEM [9] 75.22 -

LHS [57) 73.40 81.07

MRF-MLBP [58] 80.08 89.94

PEM (LBP) [59] 81.10 - 8

PEM (SIFT) [59] 81.38 -

DFD (8] 84.02 - 2

High[-di;n LBP [60] 84.08 - o W s, / MRF-MLBP

CBFD [13] - 8865 S § ',’ / CBFD(Mean)
CA-LBFL (R =2) 81.50 8644 ")/ CALBFL(R-23+4)
CA-LBFL (R - 3) 8297 8892 0.3 —CA—LBFL(Combine)
CA-LBFL(R =4) 83.30 89.24 / e CA-LBMFL (R=3)
CA-LBFL(R=2+3+4) 84.72 91.66 | | . .
CA-LBFL (combine) 86.57 95.67 0 0.2 04 06 0.8 1
CA-LBMFL R = 3) 2322 89.26 False Positive Rate

Yueqi Duan, Jiwen Lu, Jianjiang Feng, and Jie Zhou, Context-Aware Local Binary Feature Learning for Face
Recognition, IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), vol. 40, no. 5, pp. 1139-
1153, 2018.
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Local Binary Representation Learning

GraphBit: Bitwise Interaction Mining via Deep
Reinforcement Learning

Objectives Bitwise _In-teraction
Mining
N NN . _ . A T . o
N ™\ oXlle % s ransition ! E
Input 7 5

P W DX o/Hlel c e

® Ambiguous bit X B |

® Reliable bit GraphBit
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Yueqi Duan, Ziwei Wang, Jiwen Lu, Xudong Lin, and Jie Zhou, GraphBit: Bitwise Interaction Mining via Deep
Reinforcement Learning, IEEE CVPR, 2018.



Local Binary Representation Learning
Simultaneous Local Binary Feature Learning and Encoding

(SLBFLE)

=N
] B
4
10
. oy — . iE—|:— SLBFLE
1 :g
4
4
SJJ. =
PDV
Training Images = W D
- =
1 1
i ! -
> | 2 ol >
N . ?:
Test Image . -
2 Compact Histogram
i Binary Code Representation
PDV
Jiwen Lu, Venice Erin Liong, and Jie Zhou, Simultaneous Local Binary Feature Learning and Encoding for 119

Homogeneous and Heterogeneous Face Recognition, IEEE Transactions on Pattern Analysis and Machine
Intelligence (TPAMI), 2018, accepted.



Local Binary Representation Learning
Simultaneous Local Binary Feature Learning and Encoding

(SLBFLE)

min J = J;+ A.Js
w.,D.«
N
2
— § : (an — Dan||* + ’?'“"-"nHl)
n=1
N K
T 2
+ A\ E E ank — W, X-n”
n=1k=1
N
subject to 1) bukl>=0. Vi
n=1
T kxk
b,b, =1""", Vmn
Jiwen Lu, Venice Erin Liong, and Jie Zhou, Simultaneous Local Binary Feature Learning and Encoding for 120

Homogeneous and Heterogeneous Face Recognition, IEEE Transactions on Pattern Analysis and Machine
Intelligence (TPAMI), 2018, accepted.



Experimental Results

Face Recognition
e Dataset---FERET face database

Method b fc dupl | dup2
LBP [1] 93.0 51.0 61.0 50.0
LGBP [86] 94.0 97.0 68.0 53.0
HGGP [83] 97.6 98.9 7.0 76.1
LDP [82] 94.0 83.0 62.0 53.0
GV-LBP-TOP [35] | 98.4 99.0 82.0 81.6
GV-LBP [35] 98.1 98.5 80.9 81.2
LQP [24] 99.8 94.3 85.5 78.6
POEM [68] 97.0 95.0 77.6 76.2
s-POEM [66] 994 | 100.0 91.7 90.2
DFD [36] 994 | 100.0 91.8 92.3
CBFD [45] 99.8 | 100.0 93.5 93.2
SLBFLE (R=2) 99.7 99.7 89.9 80.0
SLBFLE (R=3) 99.9 | 100.0 | 945 | 90.9
SLBFLE (R=4) 99.9 100.0 95.2 92.7

Jiwen Lu, Venice Erin Liong, and Jie Zhou, Simultaneous Local Binary Feature Learning and Encoding for
Homogeneous and Heterogeneous Face Recognition, IEEE Transactions on Pattern Analysis and Machine
Intelligence (TPAMI), 2018, accepted.
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Experimental Results

Face Recognition
e Dataset---LFW face database

Method VR AUC

LBP [65] 6945 | 7547 PR e R R
SIFT [65] 64.10 | 54.07 | | : :

LARK [55] 7223 | 78.30 5 — g : g
POEM [67] 7522 | - 0.9 2 eerees e S ;
LHS [59] 73.40 | 81.07 5 5 : : ;
MRE-MLBP [2] 80.08 | 89.94 E — g‘g;‘m-gp ;
PEM (LBP) [38] 81.10 | - T 0.8 e )
PEM (SIFT) [38] 8138 | - z | M EIED
and 55, e [ = S ——CBFD (combine) |
CBED (combine) [45] - | 9091 L 57 | —par
High-dim LBP [10] 8408 | - S L MRE-MLEP ;
PAF [79] 87.77 | 94.05 = | ; ; - - - Spartans ;
MRE-Fusion-CSKDA [2] | - | 98.94 o6l S . Y e
Spartans [28] - 94.24 : : : —SBFLE :
) || S SBFLE (Combine)|;
SLBFLE (R=2) 82.02 | 88.95 0.51L . 1 l .
SLBFLE (R=3) 84.08 | 90.46 0 0.2 04 08 0.8 1
SLBFLE (R=4) 84.18 | 90.53 False Positive Rate

SLBELE (R=2+3+4) 85.62 | 92.00

Jiwen Lu, Venice Erin Liong, and Jie Zhou, Simultaneous Local Binary Feature Learning and Encoding for
Homogeneous and Heterogeneous Face Recognition, IEEE Transactions on Pattern Analysis and Machine
Intelligence (TPAMI), 2018, accepted.
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3.4 Deep Representation Learning



Representative Deep Learning Methods

e DDML (CVPR’14, TIP’17)

e DeepFace (CVPR’14)

e DeeplD/DeeplD2/DeeplD2+/DeeplD3 (CVPR’14, NIPS’14, CVPR’15, arXiv’'15)
e FaceNet (CVPR’15)

e VGG Face (BMVC’15)

e Center Face (ECCV’16)

e Large-Margin Face (ICML'16)

e SphereFace (CVPR’17)

e Range Face (ICCV’17)
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Deep Representation Learning

Discriminative Deep Metric Learning (DDML)

e Contrastive loss

[ Same or different ]

1

2
[ Distance Metric: d7(x;,x;) = "hiz] - I1£2)||2 ]

b .......j

00

= h™) = s(WODRM-1) | h(M)) ¢ re™

W@, p@ |

00---00
00:---00
00 ---00=

)

e . \\\“
A DDML i J -: '
{ ® — | S S
\\ \‘. I\'- 'rj ’
\ \“H { '\‘_,_’ S
* “ T'féﬁ_j\'\,kl-‘ul"1 S
o o0 . R
® A oreren Ty
Before After
f@j (T — f{){g, Xj}) > 1
arg mfin J = L+ 0
1

g(l — Ly (T — d?-{xt-,xj}))

)‘ ﬁf 1 e
£ 23 (W2 + e )

m=1

Junlin Hu, Jiwen Lu, and Yap-Peng Tan, Discriminative deep metric learning for face verification in the wild, IEEE

CVPR, pp. 1875-1882, 2014.
Jiwen Lu, Junlin Hu, and Yap-Peng Tan, Discriminative deep metric learning for face and kinship verification,

IEEE Transactions on Image Processing (TIP), vol. 26, no. 9, pp. 4269-4282, 2017.
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Deep Representation Learning

DeepFace
e Softmax loss

e 3D face alignment
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Deep Representation Learning

DeeplD
e Softmax (+ Contrastive) loss

e Multiple CNNs: 60 ConvNets

Multiple ConvNets
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[Sun et al., CVPR'14]; 5



Deep Representation Learning

FaceNet
e Triplet loss

N
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e Semi-hard negative mining
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Deep Representation Learning

VGG Face

e Softmax loss
e Dataset collection: 2.6M images with 2,622 identities
o ”
e “Very deep
layer 0 | 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
type input  conv relu conv relu mpool conv relu conv relu mpool  conv relu cony relu conyv relu  mpool conv
name - convl_1 relul _I convl_2 relul_2 pooll conv2_I relu2_1 conv2_2 relu2_2 pool2 conv3_1 relu3_1 conv3_2 relu3_2 conv3_3 relu3_3 pool3 convd_l
support - 3 | 3 1 2 3 | 3 1 2 3 l 3 1 3 1 2 3
filt dim - 3 - 64 - - 64 - 128 - - 128 - 256 - 256 - 256
num filts| - 64 - 64 - - 128 - 128 - - 256 - 256 - 256 - - 512
stride - I | 1 1 2 I | 1 1 2 I l 1 1 | 1 2 1
pad - I 0 1 0 0 I 0 1 0 0 I 0 1 0 | 0 0 1
layer 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
type relu conv relu conv relu  mpool conv relu conv relu conv relu  mpool conv relu conv relu conv softmx
name (relud_1 conv4_2 relud_2 conv4_3 relud_3 poold conv5_1 relu5_1 conv5_2 relu5_2 conv5_3 relu5_3 poolS fco relu6 fc7 relu7 fc8 prob
support 1 3 1 3 1 2 3 1 3 |] 3 1 2 7 1 1 1 1 1
filt dim - 512 - 512 - - 512 - 512 - 512 - - 512 - 4096 - 4096 -
num filts| - 512 - 512 - - 512 - 512 - 512 - - 4096 - 4096 - 2622 -
stride 1 | 1 1 1 2 | 1 1 1 1 | 2 1 1 1 1 1 1
pad 0 | 0 1 0 0 | 0 1 0 1 0 0 0 0 0 0 0 0

[Parkhi et al., BMVC’15]; 5q




Deep Representation Learning

Center Face AT %”Q ? o
e Softmax loss + Center loss ?{: f‘; el
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Deep Representation Learning

Large-Margin Face
e |-Softmax loss

e Potentially larger angular
separability

IWil=Iw:l

Original Softmax Loss
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[Liu et al., ICML16] 134



Deep Representation Learning

SphereFace
e A-Softmax loss

Modified Softmax loss:
1

ellzill cos(8y, i)
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1
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Deep Representation Learning

Range Face
e Range loss

e Effectively utilizing the tailed data in training process

Person ID
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3.5 More Face Recognition Tasks



Video-based Representation Learning

Attention-aware Deep Reinforcement Learning (ADRL)

e Attention frames selection

4'[ Verification ].7

Attention Attention P
T I T I T I reinforcement
i Frame Evaluation Network learning
- I I 1 I
Local Temporal Pooling Local Temporal Pooling
Temporal
T T I 1 T 1 representation
Local Recurrent Local Recurrent learning
T T i T
Spatial
representation
learning
I | I T T I
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Yongming Rao, Jiwen Lu, and Jie Zhou, Attention-aware deep reinforcement learning for video face recognition,
IEEE ICCV, pp. 3731-3740, 2017.



Video-based Representation Learning

Discriminative Aggregation Network (DAN)
e Aggregated images generation

.

Aggregated Images \

~

Input Videos
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Yongming Rao, Ji Lin, Jiwen Lu, and Jie Zhou, Learning discriminative aggregation network for video-based face
recognition, IEEE ICCV, pp. 3781-3790, 2017.



Cross-Modal Representation Learning

Motivation
e Cross-modal face matching suffer from large intra-class

variations
e CASIA NIR-VIS 2.0




Cross-Modal Representation Learning

Basic idea:
e Modality-invariant feature extraction

e Image synthesis

e Common space projection
e CDFE [Lin and Tang, ECCV’06]
e CCA[Yietal.,ICB'07]
e CSR [Lei and Li, CVPR’09]
e CMML [Mignon and Jurie, ACCV’12]
e MvDA [Kan et al., TPAMI’16]
e MvML [Hu et al., TPAMI’18]
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Kinship Verification
e KinFaceW-I: 500 kinship image face pairs
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Kinship Verification

e KinFaceW-II: 1000 klnshlp image face pairs
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Kinship Verification

e Baseline Resu

ts

Feature | F-S F-D M-S M-D Mean
LBP 62.7 60.2 544 61.4 59.7
LE 66.1 59.1 58.9 68.0 63.0
SIFT 65.5 59.0 555 554 58.8
TPLBP | 56.3 60.5 56.0 62.2 58.7
Correct verification accuracy on the KinFaceW-| dataset.
Feature | F-S F-D M-S M-D Mean
LBP 64.0 635 628 63.0 63.3
LE 69.8  66.1 72.8 72.0 69.9
SIFT 60.0 569 548 554 56.8
TPLBP 64.4 60.6 60.8 62.9 62.2

Correct verification accuracy on the KinFaceW-Il dataset.

Jiwen Lu, Junlin Hu, Xiuzhuang Zhou, Yuanyuan Shang, Yap-Peng Tan, and Gang Wang, Neighborhood repulsed metric
learning for kinship verification, IEEE CVPR, pp. 2594-2601, 2012.
Jiwen Lu, Xiuzhuang Zhou, Yap-Peng Tan, Yuanyuan Shang, and Jie Zhou, Neighborhood repulsed metric learning for

kinship verification, IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), vol. 36, no. 2, pp. 331-345,

2014.
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Webpage

e www.kinfacew.com

Home Datasets Protocol Download Results References Contact Changes

Home

Welcome to Kinship Face in the Wild (KinFaceW), a database of face images collected for studying the
problem of kinship verification from unconstrained face images. There are many potential applications for
kinship verification such as family album organization, genealogical research, missing family members
search, and social media analysis.

The aim of kinship verification is to determine whether there is a kin relation between a pair of given
face images. The kinship is defined as a relationship between two persons who are biologically related
with overlapping genes. Hence, there are four representative types of kin relations: Father-Son (F-S),
Father-Daughter (F-D), Mother-Son (M-S) and Mother-Daughter (M-D), respectively.

News!

Sep-22-2014: The detailed information of The Kinship Verification in the Wild Evaluation can be found
here, which is organized as part of FG2015. 142


http://www.kinfacew.com/

Media Coverage

TR | ety | Shmetoniete NewScientist [l
of endurance can't be faked extreme winter

Home News In-Depth Articles Blogs Opinion TV Galleries Topic Guides LastWord Subscribe Dating
SPACE pjEe] ENVIRONMENT  HEALTH LIFE  PHYSICS&MATH  SCIENCE IN SOCIETY

Home | Tech | Science in Society | News
WY o L2

K od . - Facial recognition software spots family resemblance

y Updated 18:06 13 December 2011 by Kate McAlpine
y Magazine issue 2842. Subscribe and save

FACIAL recognition software that's as good as people at spotting family B PRINT (4] senp #" SHARE
resemblances could help to reunite lost family members - or help the likes of

Facebook work out which of your friends are blood relatives.

We intuitively recognise family resemblance through features like shared eye
colour or chin contours, but computers have a hard time making such links

I HE EAR I H 3 between photos of different people.
Jiwen Lu of Nanyang Technological University in Singapore and his colleagues
Exp ODED at Capital Normal University in Beijing, China, trained a piece of software to
determine whether or not a pair of photos shows a parent and child. To do this,

How humans survived the the team used a database of public figures and their parents or children - such
. . - as French president Nicolas Sarkozy and his son Jean - and fed the program
greateSt disasterin hlStOl’y 320 pairs each of parent-child matches and mismatches. The program
analyses pictures one pixel at a time and looks for trends in the surrounding
pixels.

The software then compared the difference between a test pair of photos with
pairs of photos in its database. If the differences between the photos were
similar to those between parent-child pairs, the images were declared a kinship
match. In tests using 160 pairs - 80 parent-child matches and 80 mismatches -
the system had a success rate of 68 per cent. The work was presented last
week at the Association for Computing Machinery's Multimedia conference in
Scottsdale, Arizona.

HEAVENLY BODY
The eventful life and near death | au’
of our favorite space explorer ||

www. NewScaentist.com F

Unlike some previous kinship-recognition programs, Lu's system can deal with
variations in pose, expression and illumination. But because it simply compares
groups of pixels, it doesn't reveal anything about which facial characteristics
might be the best indicators of family ties.
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Social Impact

e Successfully identify the father-son kinship of the king and
prince in the Netherlands.

P,

e Successfully help the adoptee in UK to kinship verification
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Part 4: Open Questions and Discussions



Face Alighment

* Frontal face alignment: Solved

e structural and hierarchical reorientation

e coarse-to-fine shape refinement

* Large-pose
* Profile/self-occlusion
e 2D-3D face fitting

3D Morphable Model

P

| ,

12

Update
Projection
Matrix

—

Cascade of CNN Regressors

Update Update
I 3D Shape | Projection
, Parameter | Matrix
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Face Alighment

* Frontal face alignment: Solved
e structural and hierarchical reorientation
e coarse-to-fine shape refinement
* Large-pose
» Profile/self-occlusion . " ; b
e 2D-3D face fitting |
* 3D face tracking
* Low-resolution
e Facial motion
* Pose changes
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Face Recognition
Scalability: large-scale face recognition

Robustness: partial faces, large poses, illuminations,
expressions, makeups, noisy/missing labels

Efficiency: equipped on mobile devices

Anti-Spoofing: attack and defense

Unsupervised Settings: with no/less training labels

3D Face Recognition: exploitation of 3D data
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