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Abstract— In this paper, we propose an ordinal deep feature
learning (ODFL) approach for facial age estimation. Unlike
conventional age estimation methods which utilize hand-crafted
features, our ODFL develops deep convolutional neural net-
works to learn discriminative feature descriptors directly from
image pixels for face representation. Motivated by the fact that
age labels are chronologically correlated and age estimation
is an ordinal learning computer vision problem, we enforce
two criterions on the descriptors which are learned at the
top of our network: 1) the topology-aware ordinal relation of
face samples is preserved in the learned feature space, and
2) the age difference information of the embedded feature
representation is exploited in a ranking-preserving manner.
Extensive experimental results on four face aging datasets show
that our approach achieves promising performance compared
with the state-of-the-art methods.

I. INTRODUCTION

Facial age estimation attempts to predict exact age values

for given facial images, which plays an important role in the

human-computer interaction, visual advertisements and bio-

metrics [1]–[3]. While extensive efforts have been devoted,

facial age estimation still remains a challenging problem

due to two aspects: 1) large variations caused by cluttered

occlusions, facial poses and expressions, and 2) aging labels

have chronological ordinal relation.

Existing facial age estimation systems usually consists

of two key components: extracting face features [2], [4]–

[6] and learning age estimators [7], [8]. However, most

features employed in these methods are hand-crafted, which

requires strong prior knowledge by hand. To address this,

learning-based feature representation methods [9]–[11] have

been proposed to learn discriminative feature representation

directly from raw pixels. For example, Fu et al. [10] pro-

posed a holistic feature learning method by leveraging a

discriminative manifold learning technique. Lu et al. [11]

addressed the cost-sensitive problem for age estimation by

learning local binary codes for face representation. However,

their methods utilize linear feature filters so that they are

not powerful enough to exploit the complex and nonlinear

relationship between face samples and age labels. To address

this nonlinear issue, deep learning methods [12]–[16] have

been applied to model the relationship between face features

and aging process by a series of nonlinear transformations.

For example, Yi et al. [12] employed multi-scale deep feature
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representation via convolutional neural networks (CNN) to

predict the age value with the additional gender and ethnicity

information. Niu et al. [16] developed an ordinal ranker with

multiple binary classifiers under the CNN architecture.

Unlike existing deep learning-based facial age estimation

methods which ignore to explicitly consider the structural

order relationship among face images (i.e., quadruplet and

triplet based comparisons), we propose an ordinal deep

feature learning method, dubbed ODFL, to learn age-adaptive

face descriptors with CNN to exploit the topology-aware

ordinal relation for face presentation. To achieve this, we

enforce two important criterions at the top of our network

and optimize the parameters of the network with back-

propagation. We conduct experiments on four face aging

datasets and obtain significant performance in comparisons

with the state-of-the-art facial age estimation methods.

The rest of this paper is organized as follows: Section II

briefly reviews some related work. Section III describes the

proposed ordinal deep feature learning method for facial age

estimation in details. Section IV reports experimental results

and analysis, and Section V concludes the paper.

II. RELATED WORK

A. Facial Age Estimation

Numerous facial age estimation methods [8], [17]–[21]

have been proposed over the past two decades. For example,

Lanitis et al. [17] applied an age regression method to

address the face aging problem. Zhang and Yueng [18]

proposed an age estimation method by using a multi-task

Gaussian process (MTWGP). Chang et al. [8] presented

an ordinal hyperplane ranking (OHRanker) method which

divided the age estimation problem as a series of sub-

problems of binary classifications. Geng et al. [20] proposed

a label distribution learning (LDL) approach to model the

relationship between face images and age labels. However,

these methods usually employ hand-crafted features such

as the holistic subspace feature [9], [22], local binary pat-

tern (LBP) [5] and the bio-inspired feature (BIF) [2] for

face representation, which requires strong expert knowledge

by hand. To address this, several attempts have been made

to learn discriminative face descriptors by using advanced

feature learning approaches [11], [21], [23], [24]. For ex-

ample, Guo et al. [24] proposed a holistic feature learning

approach by utilizing a manifold learning technique. Lu et
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Fig. 1. The framework of the proposed ODFL. During the training stage, we enforce two objectives on learning age-related face descriptors to exploit
both the topology-preserving ordinal relation and age difference information at the top layer of the designed network, and the parameters of the network are
optimized via back-propagation. During the testing stage, we directly feed the face image to the trained network. Having obtained the face representation,
we put it to a learned age estimator and obtain the exact age value.

al. [11] proposed a local binary feature learning method (CS-

LBFL) to learn a face descriptor which is robust to local

illumination. Nevertheless, these methods aim to seek simple

feature filters, so that they are not powerful enough to exploit

the nonlinear relationship of face samples in such cases that

facial images are exposed to large variations of diverse facial

expressions and ordinal aging labels.

B. Deep Learning

Recently, deep learning methods have been applied to

many facial analysis tasks including face detection [25], face

alignment [26] and face recognition [27], [28]. For example,

Zhang et al. [26] utilized stacked auto-encoder networks to

estimate facial landmarks in a coarse-to-fine manner. Sun

et al. [27] developed a DeepID2 network to reduce the

personalized inter-covariance jointly by using the identifi-

cation and verification signals. Parkhi et al. [28] proposed

a VGG Face Net with a very deep architecture, which was

pretrained by a large scale face dataset for face recognition.

Inspired by the aforementioned works which learn task-

adaptive face feature representation, deep learning has been

also used to learn a set of nonlinear feature transformations

for facial age estimation [13], [16], [29]–[32]. For example,

Levi et al. [32] proposed a multi-task method with CNN

to jointly address the age and gender classification in a

unified framework. Yang et al. [33] employed deep scattering

transform networks (DeepRank) to predict ages via category-

wise rankers. Niu et al. [16] developed a CNN-based ordinal

regression (OR-CNN) method with multiple binary outputs

for age prediction. While significant performance can be ob-

tained under these methods, they ignored to take advantages

of the quadruplet-based ordinal relation during batch-wise

training procedure in deep learning, which makes the learned

features less efficiency for age prediction.

In contrast to previous approaches, our proposed ODFL

learns face descriptors directly from image pixels with CNN

by exploiting the structural and high-order information in-

cluding both quadruplet and triplet ordinal relations. We

show that our method achieves better performance than the

state-of-the-art facial age estimation methods on four face

aging datasets.

III. PROPOSED METHOD

Conventional facial age estimation methods [8], [17],

[18], [20] utilize hand-crafted features, which may loss

some crucial information. Learning-based face representation

methods [10], [11], [23] learn linear feature filters which

are not powerful enough to model the nonlinear relationship

of face data and age labels. To address both the nonlinear

and feature learning issues, deep learning [13], [29]–[31],

[34] has been adopted to learn discriminative features from

raw pixels under the CNN architecture. However, these

methods cannot directly model the topo-structure and high-

order relations across age labels for real-world aging pattern.

To address this, we introduce an ordinal deep feature learn-

ing (ODFL) approach to learn face descriptors for facial age

estimation. Specifically, our ODFL aims to learn a series

of hierarchical nonlinear transformations by enforcing two

importance objectives, where both the topology-preserving

ordinal relation and age difference information are exploited

in the learned face descriptors. In this section, we will

describe the proposed learning criterions and detail the

optimization procedure.

A. Ordinal Deep Feature Learning

Fig. 1 shows the framework of the proposed method. Let

X = {(xi, yi)}Ni=1 denote the training set which contains N
samples, where xi ∈ R

d denotes the ith face of d pixels.

The goal of our model aims to learn to compute feature

representation f(xi) with CNN for the ith face image xi.
We feed the face image to the designed CNN and obtain

the immediate feature representation, which is computed as

follows:

f(xi) = h(m)
i = pool

(
ReLU(W(m) ⊗ xi + b(m))

)
, (1)

where pool(·) denotes the max pooling operation, ReLU(·)
denotes the nonlinear ReLU function, and m is specified to

a set of {1, 2, · · · ,M − 2} which represents the mth layer.

To learn efficient face descriptors for facial age estimation,

the key design lies in preserving the ordinal relation among

training samples in the transformed feature space. To achieve

this, we define the training loss by including two terms:

the topology-preserving ordinal relation term J1 and the age

difference information term J2 at the top of our network.
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Fig. 2. Topology-Preserving Ordinal Relation. Given a quadruplet of
face samples and age labels from a training batch, we construct a directed
unweighted topology as the label ordinal graph towards ordinal embedding.
Our ODFL aims to learn a deep convnet, where the topology-aware ordinal
relation within the label ordinal graph has isotonic distance with that in the
learned feature space. As a result, the topology-preserving ordinal relation
is preserved in the obtained face descriptors which are computed by the
trained convnet.

The parameters of the network are optimized via back-

propagation.

The face descriptor at the top layer of our network is

computed as follows:

f(xi) = h(M)
i = σ(W(M)xi + b(M)), (2)

where W(M) and b(M) denote the weights and bias of the top

layer, respectively, and σ(·) denotes the nonlinear function.

To sum up the total weights, we collect {1, 2, · · · ,M} for

m to train the whole CNN based on the dissimilarity on the

face pair of f(xi) and f(xj), which is computed as follows:

d2f (xi, xj) = ‖f(xi)− f(xj)‖22, (3)

where ‖ · ‖2 denotes the Euclidean distance in the learned

feature space.

Topology-Preserving Ordinal Relation. Unlike conven-

tional facial age estimation methods [11], [16], [19] which

learn age rankers based on pairwise comparisons, we con-

struct a label ordinal graph based on a set of quadruplets

from training batches, and the defined objective enforces

that the ordinal relation in the learned feature space should

be isotonic to that in the label space [35]. The goal of our

ODFL is to map the face samples to a latent space, where the

topology-aware ordinal relation is preserved in the learned

face descriptors according to the distance of age labels. To

better measure the distance between pairs of age labels, we

introduce a label embedding method [36] to smooth the label

distance.

As illustrated in Fig. 2, suppose we have a sampled

quadruplet (i, j, k, l) from the training batch B with the

knowing age labels (yi, yj , yk, yl). Based on the age labels,

our model encodes such a quadruplet with a particular subset

of ordinal constraints as follows:

δ (yi, yj) < δ (yk, yl) , ∀(i, j, k, l) ⊆ B, (4)

where δ (·, ·) denotes the smooth function, which is viewed

as a dissimilarity degree between a pair of age labels and is

defined by the Gaussian function as follows:

δ (yi, yj) = δij = exp
−(yi−yj)

2

H2 , (5)

where H denotes the label difference threshold to determine

the variance of age label distribution.

To model the topo-structure for the quadruplet of age

labels, we construct a label graph G = (V,E) = [n]4, where

each node δij ∈ V represents the age dissimilarity degree

between the ith and jth samples, while each directed edge

e(i,j,k,l)⊆B ⊆ E represents an ordinal relation of δij < δkl.
Our ODFL aims to encode items in B as projected feature

representation such that the ordinal constraints are preserved

by an isotonic distance, which is defined as follows:

δij < δkl =⇒ d2f (xi, xj) < d2f (xk, xl), (6)

which means the topology-aware ordinal relation within the

label ordinal graph has the isotonic distance with that in

the learned feature space (see more details in Fig. 2). There

are two common situations for (6), i.e., quadruplet ordinal

relation where (i, j, k, l) ⊆ B ⊆ [n]4 and (i, j, i, k) ⊆
B ⊆ [n]3. Hence, the objective takes advantages of the

fully structural ordinal relation of training batches, so that

the high-order quadruplet and triplet based comparisons can

be taken into account in the feature space simultaneously,

where the distance of the face pair of the ith and jth samples

should be smaller than that with the face pair of the kth and

lth samples.

To involve the label information, we utilize the constructed

ordinal label graph G to train the designed network in

a globally supervised manner. For the ordinal relation of

e(i,j,k,l)⊆B ⊆ E in the batch B, we expect the relation

of age dissimilarity degree should be preserved by the

learned feature space under the constraint of (6). To achieve

this, we employ the hinge loss to optimize the violates of

unsatisfied quadruplet comparisons. Hence, the objective J1
is formulated as follows:∑
vij ,vkl∈G

ζ(vij , vkl) ·max[0, α− d2f (xi, xj) + d2f (xk, xl)], (7)

where ζ(vij , vkl) indicates 1 if there is a vertex vij to vkl,
and 0 otherwise, and α denotes a thresholding margin which

is set to 1.

Age Difference Information. To better improve the

discriminativeness of the face descriptors, we introduce a

weighted ranking approximation method [37] to consider

the ranking-preserving age difference information for the

sampled triplets based on age gaps. As demonstrated in

Fig. 3, we define an objective to measure the age difference

information. Specifically, given a triplet of an anchor sample

and other two samples, based on this anchor sample, the

objective enforces that the difference of a pair with a small
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Fig. 3. Age Difference Information. Suppose there are three face samples
from the training set and let the yellow square denote the anchor sample.
Based on the anchor sample, the red triangle represents the face sample
with an age gap of 3 years old and the green circle denotes that with an
larger age gap of 6 years old. Our ODFL aims to learn a set of nonlinear
feature transformations, where a face pair with a larger age gap has a larger
ranking weight ω2 than the ranking weight ω1 with a smaller age gap. As
a result, the ranking-preserving age difference information can be exploited
in the learned feature space to reinforce our model (best viewed in color
pdf file).

age gap should be smaller than that of a pair with a large

age gap in the learned feature space. To this end, the

age difference is weighted dynamically in the embedded

feature space according to different age gaps, and the ranking

weights are computed to show how they exploit different

relations for different age gaps. Therefore, our goal of J2 is

to minimize the following objective function:

P∑
p

(
1− �p1,p2(τ − d2f (xp1, xp2)) · ωyp1,yp2

)
(8)

where (p1, p2) denotes a face pair with different age gaps

for a given anchored face sample p. �(p1, p2) denotes the

indicator which is set to 1 if the face pair belongs to the

same age labels, and is set to −1 otherwise. τ represents a

threshold between the distance of the face pair with larger

age gaps and that of the face pair with smaller age gaps (τ
is specified to 1 in this work). yp1 and yp2 represent the age

gaps computed based on the ground-truth. ωyp1,yp2
denotes

the smoothness weighting function, which is computed as

follows:

ωyp1,yp2 =

{
(|yp1 − yp2|+ 1)η, if yp1 �= yp2

1, otherwise
(9)

where η is a constant parameter that describes the tolerance

level of varying age relationship.

With the defined age-difference specific objective, the

ranking weights are preserved by the smooth function instead

of treating all pairs with different age gaps equally, where

the chronological aging process can be well measured in the

embedded feature space. In this way, the face representation

is embedded to exploit the age difference information based

on the sampled face pairs to boost the facial age estimation

performance.

B. Formulation

To combine both topology-preserving ordinal relation and

age difference information in our training loss, we formulate

the following objective function:

min
W

J = J1 + λ1J2 + λ2J3 =∑
vij ,vkl∈G

ζ(vij , vkl) ·max[0, α− d2f (xi, xj) + d2f (xk, xl)]

+λ1

P∑
p

(
1− �p1,p2(τ − d2f (xp1, xp2)) · ωyp1,yp2

)

+λ2

M∑
m=1

(‖W(m)‖2F + ‖b(m)‖22), (10)

where λ1 and λ2 are the hyper-parameters to balance these

terms and ‖W(m)‖2F denotes the Frobenius norm of matrix

W(m) to prevent the parameters of deep network from

overfitting, respectively.

The first term J1 in (10) is to preserve the topology-

preserving ordinal relation for each sampled quadruplet.

Moreover, the fully order relationship of both quadruplet and

triplet ranking comparisons can be preserved in the learned

feature space in a purely supervised way. The second term J2
in (10) attempts to dynamically assign the ranking-preserving

weights to achieve the age difference information for triplets

according to age gaps, where the ranking-preserving order

relationship is exploited across age labels. The third term J3
enforces the regularization on network parameters to reduce

the model complexity.

C. Optimization

To optimize J1 in (10), we present a landmark-based

ordinal embedding method (LOE) [38], which considers

the triplet comparisons from any training samples to the

landmark. In this way, the number of ordinal constraints

reduces from n4 to n · L2, where L denotes the landmark

number. Moreover, we apply a logistic loss function to relax

the maximum non-convex function max[0,Ψ] that is not

easy to optimize by g(Ψ) = 1
β log(1 + exp(βΨ)), where

β is a sharpness parameter. Hence, the formulation of (10)

is written as follows:

min
W

J = J1 + λ1J2 + λ2J3

=
n∑

i=1

L∑
j,k=1

ζ(vij , vik) · g(α− d2f (xi, xj) + d2f (xk, xl))

+λ1

P∑
p

(1− �p1,p2(τ − d2f (xp1, xp2)) · ωyp1,yp2
)

+λ2

M∑
m=1

(‖W(m)‖2F + ‖b(m)‖22), (11)

where τ denotes the threshold and is set to 1.

To solve the relaxed optimization problem of (11), we

leverage the stochastic gradient descent method to obtain the
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Algorithm 1: The Optimization Procedure of ODFL.

Input: Training set: X = {(xi, yi)}Ni=1, learning rate ρ
and iteration number T .

Output: The network parameters {W(m), b(m)}Mi=1.

Step 1 (Parameters Intialization): Initialize the

parameters {W(m), b(m)}Mi=1 by the pretrained

network.

Step 2 (Optimization via Back-Propagation):
repeat

* Randomly select an quadruplet (i, j, k, l) from a

training batch B, and then construct the label

ordinal graph G by using the label quadruplet

(yi, yj , yk, yl) according to (4) .

* Perform forward propagation and map G to a

landmark-based graph based on LOE [38].

* Perform backward propagation and compute the

gradients

* Update the parameters according to (12) and (13).
until convergence or reaching the maximum iteration
number T ;

Return {W(m), b(m)}Mi=1.

gradients of the parameters {W(m), b(m)} w.r.t. the objective

function J , where m = {1, 2, ...,M}.
Then, W(m) and b(m) are updated by using the gradient

algorithm as follows until convergence:

W(m) = W(m) − ρ
∂J

∂W(m)
, (12)

b(m) = b(m) − ρ
∂J

∂b(m)
, (13)

where ρ denotes the learning rate, which controls the conver-

gence speed of the objective function J . Algorithm 1 details

the training procedure of the proposed ODFL.

IV. EXPERIMENTS

We evaluated our ODFL on four widely benchmark-

ing datasets including the MORPH (Album2) [39], FG-

NET [17], FACES [40] and the apparent facial age estima-

tion [41] datasets. The followings describe the details of our

experimental settings and results.

A. Experimental Settings and Implementational Details

We detected the face bounding boxes on the original

face images based on the open source computer vision

library DLIB [42]. For each facial image, we detected three

landmarks including two centers of eyes and the nose base

to align the face into the canonical coordinate system by

using the similar transformation. The aligned faces were fed

to the designed network and then the exact age values were

predicted by the learned OHRanker [8]. For the parameters

employed in our ODFL, we set H = 5, η = 0.5, λ1 = 0.3
and λ2 = 0.001 by cross-validation. For the parameters of

the designed network, we specified the values of the weight

decay, moment and learning rate empirically to 0.0001, 0.9

and 0.001, respectively. The whole training procedure of the

network converged in 5 iterations.

B. Evaluation Metrics

For the evaluation metrics, we utilized the mean absolute

error (MAE) [1], [9] to measure the error between the

predicted age and the ground-truth, which is computed as

follows:

ε =
‖ŷ − y∗‖2

N
(14)

where ŷ and y∗ denote predicted and ground-truth age value,

respectively, and N denotes the number of the testing facial

images.

We also applied the cumulative score (CS) [18], [21], [22],

[33] curves to quantitatively evaluate the performance of age

estimation methods. The cumulative prediction accuracy at

the error ε is computed as:

CS(θ) =
Nε≤θ

N
× 100% (15)

where Nε≤θ is the number of images on which the error θ
is no less than ε.

C. Experiments on the MORPH dataset

The MORPH (Album 2) dataset [39] consists of 55608

face images from about 13000 subjects. The age range

lies from 16 to 77 years old and there exists averaging 4

samples per person. We performed 10-folds cross-validation

for evaluation by following the settings in [11].

1) Comparisons with the State-of-the-art Methods:
We compared our model with several different state-of-the-

art facial age estimation approaches. We created a base-

line method by utilizing the bio-inspired feature (BIF) [2]

and KNN, and implemented the state-of-the-art methods

including OHRanker [8] and CS-LBFL [11] by following

the details from the original papers. Table I tabulates the

MAEs, where the MAEs of the state-of-the-arts were directly

cropped from the related papers. Fig. 4 shows the CS

curves. According to the results, we see that our ODFL

outperforms the state-of-the-art methods and even obtains

better performance than that of the deep learning methods

such as DeepRank [33] and OR-CNN [16].

2) Comparisons with Different Deep Learning Meth-
ods: We also compared our ODFL with different deep learn-

ing methods. To be specific, we first employed the pretrained

VGG Face Net [28] without the fine-tuning training as the

feature extractors. We created a baseline method with the

unsupervised VGG features and KNN. Then, we deployed

the softmax loss [43] as the single label method, and the

deep label distribution learning [14] as the Gaussian label

methods at the top of the VGG Face Net and finetuned

the network. Table II tabulates the performance of different

deep learning methods. We see that our model obtains the

best performance, which is because the structural ordinal

relation is exploited by our model in the learned face feature

representation, which take advantages of the fully order

relationship of quadruplet comparisons.

161161161161161



TABLE I

COMPARISON OF MAES WITH DIFFERENT STATE-OF-THE-ART

APPROACHES ON THE MORPH DATASET.

Method MAE

BIF+KNN 9.64
AGES [1] 8.83

Raw+OHRanker 7.34
LBP+OHRanker 6.88
BIF+OHRanker 6.49
MTWGP [18] 6.28

LDL [20] 5.69
CPNN [20] 5.67

CA-SVR [44] 4.87
BIF+OLPP [45] 4.20
CS-LBFL [11] 4.52

CS-LBMFL [11] 4.37
DeepRank [33] 3.57

DeepRank+ [33] 3.49
OR-CNN [16] 3.27

ODFL 3.12
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Fig. 4. The CS curves of our ODFL compared with different facial age
estimation methods on the MORPH dataset.

3) Comparisons with Existing Networks: We compared

the performance of our ODFL with existing deep net-

works including AlexNet [43], ResNet [46] and VGG Face

Net [28]. Specifically, we directly deployed our proposed

objectives at the top of the pretrained networks and finetuned

them. Note that the ResNet and VGG Face Net were fed

with the faces in the size of 224 × 224 and 227 × 227 for

the AlexNet. Table III tabulates the results of our ODFL

compared with different deep networks. According to the

results, we see that our ODFL with the VGG Face Net

obtains the best performance. It is because the VGG Face

Net were pretrained by a large amount of face images

for 2622 person identities, which achieves to capture more

facial patterns than those of any other networks and further

improves the capacity of the learned face features for age.

4) Computational Time: Our ODFL was implemented by

the open source Caffe [47] deep learning toolbox. We trained

our model with a speed-up parallel computing technique by

using single GPU with NVIDIA GTX 970. Table III tabulates

the comparisons of the computational time during the testing

phase. We see that the VGG Face Net proceeds averaging

TABLE II

COMPARISON OF MAES WITH DIFFERENT DEEP LEARNING

APPROACHES ON THE MORPH DATASET.

Method MAE

unsupervised VGG + KNN 7.21
unsupervised VGG + OHRanker 4.58

VGG + Single Label 3.63
VGG + Gaussian Label 3.44

ODFL 3.12

TABLE III

COMPARISON OF MAES AND COMPUTATION TIME OF OUR ODFL

COMPARED WITH DIFFERENT DEEP NETWORK ARCHITECTURES ON THE

MORPH DATASET.

Method MAE Testing Time

AlexNet [43] 3.72 2425.3 imgs/s
ResNet [46] 3.47 256.8 imgs/s

VGG Face Net [28] 3.12 143.2 imgs/s

143.2 images per second with single GPU. Moreover, the

OHRanker employed in our experiments takes 0.04 seconds

by using an Intel i7-CPU@3.40GHz PC, which satisfies the

real-time requirement.

D. Experiments on the FG-NET dataset

There are 1002 images from 82 persons in FG-NET

dataset [17] and there exists averaging 12 samples for each

person. The age range covers from 0 to 69. To conduct

the age estimation experiments, we employed the leave-one-

person-out (LOPO) evaluation. Specifically, we randomly

selected face images from one person as testing images, and

the remaining were used for training. Table IV and Fig. 5

shows the MAEs and the CS curves of our ODFL compared

with the state-of-the-arts, respectively. From the results, we

see that our ODFL outperforms of the state-of-the-arts.
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Fig. 5. The CS curves of our ODFL compared with different facial age
estimation methods on the FG-NET dataset.
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TABLE IV

COMPARISON OF MAES COMPARED WITH STATE-OF-THE-ART

APPROACHES ON THE FG-NET DATASET.

Method MAE

BIF+KNN 8.24
Raw+OHRanker 6.25
LBP+OHRanker 4.92
BIF+OHRanker 4.48

RUN [48] 5.78
AGES [1] 6.77

MTWGP [18] 4.83
PLO [6] 4.82

LDL [20] 5.77
CPNN [20] 4.76

CA-SVR [44] 4.67
CS-LBFL [11] 4.43

CS-LBMFL [11] 4.36
ODFL 3.89
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Fig. 6. The CS curves of our ODFL compared with different facial age
estimation methods on the apparent facial age estimation dataset.

E. Experiments on the Apparent Age Estimation dataset

We have also investigated our method on the apparent

age estimation dataset [41]. This dataset contains 4112

images for training and 1500 images for validation. The

age range covers from 0 to 100 years old. To conduct the

experiments of our ODFL, we also created the single label

and Gaussian label methods with the VGG Face Net. Table V

tabulates the MAEs and Gaussian errors [41] and Fig. 6

shows the CS curves, respectively. From these results, we

see that our ODFL performs better than other deep learning

methods without any additional labeled data. Furthermore,

we illustrated some resulting samples in Fig. 7, where the

Fig. 7. The selected examples from the apparent age estimation dataset,
where the age prediction errors are below one year old. According to these
resulting samples, we see that our ODFL is robust to large variances of
facial wearing glasses, poses and expressions.

TABLE V

COMPARISON OF MAES AND GAUSSIAN ERRORS WITH DIFFERENT

FACIAL AGE ESTIMATION APPROACHES ON THE APPARENT AGE

ESTIMATION DATASET.

Method MAE Gaussian Error

BIF+KNN 7.19 0.620
CS-LBFL 5.12 0.422

Single Label 4.58 0.416
Gaussian Label 4.31 0.363

ODFL 4.12 0.339
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Fig. 8. The CS curves of our ODFL compared with different facial age
estimation methods for Happy Expression on the FACES dataset.

age prediction errors are below one year old. From these

samples, we see that our ODFL are robust to large variations

caused by diverse facial expressions and aspect ratios.

F. Experiments on the FACES dataset

The FACES dataset [40] contains 2052 face images from

171 persons. The age range covers from 19 to 80 years

old. For each person, there are six expressions including

neutral, sad, disgust, fear, angry and happy. In our experi-

mental setting, we conducted the experiments under the same

expression. Table VI tabulates the MAEs and Fig. 8 shows

the CS curves compared with different facial age estimation

approaches, respectively. According to the results, we see

the our ODFL obtains significant performance compared

with any other state-of-the-art methods. This is because our

method achieves the age-adaptive information across differ-

ent facial expressions based on the VGG Face Net, which

contributes to the improvements for facial age estimation on

this dataset.

V. CONCLUSIONS AND FUTURE WORK

We have proposed a new feature learning method called

ordinal deep feature learning for facial age estimation. Ex-

perimental results on four datasets show the effectiveness of

the proposed method. It is desirable to address facial age

estimation with the feed-back networks to further exploit

with the complementary information for the personalized

aging pattern in the future work.
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TABLE VI

COMPARISON OF MAES WITH DIFFERENT STATE-OF-THE-ART APPROACHES ON THE FACES DATASET.

Method Neutral Happy Disgust Fearful Sad Angry

LBP+OHRanker 5.16 7.64 8.31 7.00 6.87 7.87
BIF+OHRanker 6.36 8.88 9.20 7.30 9.09 8.86
CS-LBFL [11] 5.06 6.53 7.15 6.32 6.27 6.94
DeepRank [33] 5.99 7.12 8.15 6.35 7.77 6.68

ODFL 3.48 3.52 4.41 4.52 3.96 3.87
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